前言
样本合成是解决小样本学习问题的方法之一,所谓样本合成,就是在给定少量训练样本的情况下,在特征空间中利用这些训练样本合成新的样本,然后利用这些合成样本提升小样本学习任务的泛化能力。但是目前的合成方法仅处理的是每个图像中仅有一个类别标签(比如C(Img)=dogC(Img)=dogC(Img)=dog)这样的情况,而多标签的情况还从未被提及过(比如C(Img)={ dog,leash,person,forest}C(Img)=\lbrace dog,leash,person,forest \rbraceC(Img)={ dog,leash,person,forest})
本文针对小样本学习问题提出了一种新的解决方法,主要用于处理多标签样本的情况,并且通过任务定义,还可以处理事先并不清楚标签是什么的情况。 如下图所示,假设想要为野生动物构建一个多标签分类器,于是到动物园中拍了几张照片,但所有的动物都在笼子里(图a),而我们想得到的是用于处理野外动物的分类器(图c):
为了解决这个问题,可以在特征空间中通过样本对语义内容进行操作,比如对于一个特征向量,可以隐藏其中对应于另一个特征向量的标签相对应的元素。这里用模型MintM_{int}Mint接收两张被关在笼子里的动物的图像(图b),并且生成一个特征向量,用于表示这两张图像的共有语义内容。由于它们共有的内容是“笼子”,因此应该得到表示“笼子”的特征向量,而不应该出现原始相交图像中的笼中动物。接下来考虑另一个模型MsubM_{sub}Msub,它可以从另一个样本中移除某样本存在的内容。将MsubM_{sub}Msub应用到笼中老虎图(图a)和表示“笼子”的特征向量上,那么就可以得到表示“野外的老虎”(图c)的特征向量。也就是上图中的,图a减去图b的交集,就得到一只野外的老虎。
通过以上例子,我们可以得到一个基于样本的语义内容操作模型,MintM_{int}Mint表示对标签集进行“交”操作,MuniM_{uni}Muni表示“并”操作,MsubM_{sub}M