【BZOJ2463】谁能赢呢?(博弈论)

博客围绕棋盘骨牌覆盖问题展开,提到洛谷对题目的难度评级存在按代码而非思维难度评级的不合理情况。重点分析了用1×2骨牌覆盖n×n棋盘,指出n为奇数无法覆盖满,n为偶数能覆盖满,并阐述了奇偶局面下的博弈策略,本质是二分图博弈。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题面

BZOJ
洛谷

题解

洛谷上对于难度的评级我总觉有些问题。
很多人按照代码难度而并非思维难度在评级,导致很多评级很不合理啊。。。

不说废话了。。

对于一个 nn n ∗ n 的棋盘,我们可以考虑用 1×2 1 × 2 的骨牌来进行覆盖。
显然对于 n n 为奇数不能覆盖满,n为偶数能够覆盖满。
那么对于偶数局面,我们出发点一定是一个骨牌的一端,那么无论先手只需要移动到骨牌的另外一端去就好了,对于后手而言,因为不能回头,所以必定会走到一个新的骨牌上,而先手一定可以移动到骨牌的另外一端,那么一定是后手先无路可走。
同理对于奇数局面,我们可以认为出发点不被骨牌覆盖,那么无论先手走到了哪个骨牌的一端,后手只需要按照上述策略走就没有任何问题了。

总的来说其实本质上是一个二分图博弈。

#include<cstdio>
inline int read()
{
    int x=0;bool t=false;char ch=getchar();
    while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
    if(ch=='-')t=true,ch=getchar();
    while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
    return t?-x:x;
}
int main()
{
    while(int n=read())puts((n&1)?"Bob":"Alice");
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值