
kafka
文章平均质量分 84
漫步者TZ
一个想用技术让生活变得更进步、世界变得更美好的人
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【kafka系列】消费者组
【代码】【kafka系列】消费者组。原创 2025-05-01 12:33:38 · 757 阅读 · 0 评论 -
【kafka系列】如何选择消息语义?
可容忍丢失的实时数据流。不允许丢失的日志采集。原创 2025-02-15 15:22:13 · 295 阅读 · 0 评论 -
【kafka系列】At Most Once语义
通过合理配置,At-Most-Once可为特定场景提供高效、简洁的数据传输能力。若Broker未成功接收消息(如宕机),生产者不会重试,消息直接丢失。执行前崩溃,由于Offset已自动提交,消息不会被重新处理。若消费者拉取消息后,在。原创 2025-02-15 15:21:01 · 607 阅读 · 0 评论 -
【kafka系列】At Least Once语义
通过合理配置和业务设计,At-Least-Once可平衡可靠性与性能,是大多数场景的推荐选择。若Broker写入成功但网络超时,生产者重试会导致消息重复发送到Topic。失败(如消费者崩溃),下次启动时会重新拉取并处理同一消息,导致积分重复增加。复杂(需生产者、Broker、消费者协同)允许重复的业务(如日志采集)高(事务与协调开销)原创 2025-02-15 15:11:02 · 943 阅读 · 0 评论 -
【kafka系列】Exactly Once语义
即使在生产者重试、Broker故障或消费者重启等场景下,也能避免数据重复或丢失。正确配置后,Kafka可支持金融支付、实时对账等对数据一致性要求极高的场景。原创 2025-02-15 14:58:31 · 739 阅读 · 0 评论 -
【kafka系列】Kafka事务的实现原理
正确配置后,Kafka事务可支持金融级场景的精确一次(Exactly-Once)语义。实现跨分区的原子性写入,确保消息要么全部提交,要么全部丢弃。Kafka事务机制通过。原创 2025-02-15 14:40:28 · 1691 阅读 · 0 评论 -
【kafka系列】Kafka如何实现高吞吐量?
目录1. 生产者端优化核心机制:关键参数:2. Broker端优化核心机制:关键源码逻辑:3. 消费者端优化核心机制:关键参数:全链路优化流程吞吐量瓶颈与调优总结Kafka的高吞吐能力源于其生产者批量压缩、Broker顺序I/O与零拷贝、消费者并行拉取等多层次优化。以下是具体实现机制:2. Broker端优化核心机制: 顺序磁盘I/O: 每个Partition的日志文件()仅追加写入(Append-Only),顺序写速度可达600MB/s(远高于随机写)。原创 2025-02-15 14:25:02 · 1233 阅读 · 0 评论 -
【kafka系列】Kafka如何保证消息不丢失?
目录1. 生产者端:确保消息成功发送到Broker核心机制:关键步骤:2. Broker端:持久化与副本同步核心机制:关键源码逻辑:3. 消费者端:可靠消费与Offset提交核心机制:关键步骤:4. 全链路保障流程消息丢失的典型场景与规避总结Kafka通过生产者端确认机制、Broker端持久化与副本同步、消费者端可靠消费三个核心环节保障消息不丢失。以下是具体实现机制与步骤:2. Broker端:持久化与副本同步核心机制: 副本机制(Replication): 每个Part原创 2025-02-15 14:11:26 · 1687 阅读 · 0 评论 -
【kafka系列】日志存储设计 & 消息写入、读取
Kafka的日志存储是其高吞吐、持久化能力的核心设计,其结构包含三部分。orders-0LogLogSegmentKafka消息以**批次(RecordBatch)**为单位存储,每个批次包含多条消息,减少I/O开销。EpochSequence(源码见。原创 2025-02-15 12:55:16 · 1324 阅读 · 0 评论 -
【kafka系列】消费者重平衡 Rebalance
消费者组重平衡是 Kafka 中动态调整分区分配的关键机制,确保消费者组内成员变动或 Topic 分区变化时,负载均衡和消费进度的一致性。组内其他消费者需接管其分区,重平衡期间消息处理暂停(通常几秒到几十秒)。分区重新分配,原有消费者释放部分分区,新消费者开始消费,期间短暂停顿。在 Kafka 消费者组重平衡(Rebalance)过程中,,直到新的分区分配完成。消费者需分配新分区,重平衡期间暂停消费。频繁停顿会导致消息积压,需优化参数(如。原创 2025-02-15 12:00:59 · 1618 阅读 · 0 评论 -
【kafka系列】broker
设计思想:设计思想:原创 2025-02-15 11:59:57 · 598 阅读 · 0 评论 -
【kafka系列】消费者
单次拉取的最小数据量(Broker 等待足够数据后返回,提升吞吐量)。消费者与 Broker 的心跳超时时间,超时触发重平衡。空闲连接超时时间(Broker 主动关闭超时连接)。消费者组 ID(同一组内的消费者共享分区负载)。单次拉取的最大数据量(需小于 Broker 的。无初始 Offset 时的策略:<br>-消费者等待 Broker 响应的超时时间。调用的最大间隔时间,超时触发重平衡。自动提交 Offset 的时间间隔(Value 的反序列化类(同上)。返回的最大消息数(避免内存溢出)。原创 2025-02-15 11:58:44 · 998 阅读 · 0 评论 -
【kafka系列】生产者
以下是 Kafka 生产者(Producer)在日常开发中的。消息在缓冲区等待时间(毫秒),增大可提升吞吐量(但增加延迟)。生产者缓冲区满或元数据不可用时的阻塞时间(超时抛异常)。:等待所有 ISR 副本确认(最高可靠性)。生产者等待 Broker 响应的超时时间。单个批次的大小阈值,达到阈值后立即发送。SSL 证书路径(客户端认证时需配置)。:等待 Leader 确认(默认)。Value 的序列化类(同上)。:不等待确认(可能丢失数据)。发送失败后的重试次数(建议设为。接口),用于监控或修改消息。原创 2025-02-15 11:56:06 · 1066 阅读 · 0 评论 -
【kafka系列】架构、核心概念
设计目标是高吞吐量、低延迟、可水平扩展,主要用于处理实时数据流。以下是 Kafka 的核心架构和关键概念,帮助你快速理解和使用它。通过动手部署集群、编写生产/消费代码,结合官方文档逐步深入,你可以在实际项目中熟练使用 Kafka!Kafka 的核心优势在于其。原创 2025-02-09 12:34:32 · 1315 阅读 · 0 评论 -
【kafka系列】Topic 与 Partition
是数据组织的核心概念,它们的映射关系及在 Broker 上的分布直接影响 Kafka 的性能、扩展性和容错能力。假设一个 Kafka 集群有 3 个 Broker(Broker 0、1、2),创建一个 Topic。原创 2025-02-09 12:19:38 · 1299 阅读 · 0 评论