此星光明
博士,地图制图和地理信息工程专业,主要涉及Google Earth Engine、PIE-Engine、Planetary Computer、AI Earth、中科星图等云平台的遥感生态云计算研究(多源遥感和机器学习相结合),适用建筑、气象、农业、水利等各个专业云计算。2022年云计算领域博客之星TOP3,2023年CSDN博客之星TOP13,华为云云享专家、MVP,阿里云社区、51CTO博客专家博主。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
GEE生物量:根据土地分类数据和GEDI数据来估算生物量
摘要 该研究利用GEDI L4B生物量数据和ESA土地覆盖数据,对哥伦比亚Caqueta省的森林生态系统进行了综合分析。研究提取了2020-2021年土地覆盖数据,通过可视化对比展示了森林、农田等土地利用类型的变化。重点分析了森林覆盖的动态变化,包括增长、稳定和损失区域,并计算了生物量和碳储量。研究采用地理信息系统方法,包括边界提取、掩膜处理和直方图分析,揭示了研究区域森林资源的时空变化特征。这些结果为评估森林生态系统健康状况、监测环境变化以及制定碳管理政策提供了科学依据,展示了遥感数据在生态研究中的重要作原创 2025-07-14 08:00:00 · 404 阅读 · 0 评论 -
GEE生物量:利用GEDI和sentinel系列数据对指定区域的植被冠层高度进行了建模和估算
本文介绍了利用Google Earth Engine平台对Mavuradona自然保护区植被冠层高度进行建模的方法。通过整合多源遥感数据(包括GEDI激光雷达训练数据、Sentinel-1雷达和Sentinel-2光学影像),建立随机森林回归模型。具体步骤包括:1)定义研究区域;2)处理Sentinel-1数据计算极化和IQR特征;3)加载Sentinel-2光谱数据并进行云掩膜;4)整合SRTM地形数据;5)合并所有预测变量;6)基于GEDI数据采样训练点;7)构建随机森林回归模型;8)评估模型精度。该方原创 2025-07-05 06:30:00 · 40 阅读 · 0 评论 -
GEE生物量:基于多源遥感和GEDI L4B生物量密度来估算森林地上生物量 (AGB)
本文介绍了利用Google Earth Engine(GEE)进行森林地上生物量(AGB)建模的方法。通过整合GEDI L4B产品、Sentinel-1/2数据以及SRTM高程数据,构建了完整的分析流程:包括数据加载(边界、GEDI、Sentinel系列)、预处理(云掩膜、分位数计算)、特征提取(极化指数、光谱特征、地形因子)以及森林掩膜生成。重点展示了如何将多源遥感数据融合为预测变量集,并准备GEDI数据作为训练样本。该方法为区域尺度森林碳储量评估提供了可行技术方案,所有步骤均在GEE云平台实现,避免了本原创 2025-07-05 09:30:00 · 45 阅读 · 0 评论 -
GEE生物量预测:利用 Sentinel-1 和 Sentinel-2 数据和地形数据与随机森林回归模型进行预测AGB预测
本文介绍了使用Google Earth Engine (GEE)处理遥感数据的完整流程,包括加载Sentinel-1/2数据、计算四分位数范围、提取地形特征以及准备回归建模。主要内容包括:1)加载研究区域边界数据;2)处理Sentinel-1数据并计算VV/VH极化的四分位数范围;3)加载Sentinel-2数据并进行云掩膜处理;4)集成SRTM高程数据计算坡度;5)合并所有预测变量;6)准备GEDI数据作为训练数据集。整个流程展示了GEE在遥感数据处理中的强大功能。原创 2025-06-29 13:47:48 · 60 阅读 · 0 评论 -
GEE生物量和高度:实现森林冠层高度的多级分类与空间分布制图(广西北部湾典型森林区为研究对象)。通过本方法可快速获取区域森林垂直结构特征(树高)
本文以广西北部湾典型森林区为研究对象,利用Google Earth Engine平台,实现森林冠层高度的多级分类与空间分布制图。通过本方法可快速获取区域森林垂直结构特征,为森林资源管理提供科学依据。通过本方法,林业部门可在3小时内完成传统野外调查需要3个月的工作量,实现大范围森林垂直结构的快速评估。建议结合实地样方数据定期校准模型,持续提升监测精度。采用mosaic方法融合多期观测数据,提升空间连续性。全程在GEE平台完成,无需本地计算资源。结合均值与百分位数多维度描述林分结构。原创 2025-06-11 08:00:00 · 116 阅读 · 0 评论 -
GEE生物量预测:利用多源遥感数据和随机森林算法RF构建地上生物量(AGB)预测模型,并实现未来年份的生态变化模拟(大面积生物量反演)
数据融合策略:整合5类遥感产品(AGB、NDVI、LAI、土地覆盖、地形)时序特征构建:采用生长季中值法降低云污染影响机器学习优化分层采样保证数据代表性80棵决策树平衡精度与效率预测可靠性基准期R²达0.76需结合地面实测数据校正。原创 2025-06-07 08:00:00 · 100 阅读 · 0 评论 -
GEE森林物候监测:第一步找出2001-2023年的森林分布区域
NDVI 是通过近红外(NIR)和红光(Red)波段的反射率计算得出的,表达植被的绿度和生长状况。原创 2025-05-24 08:00:00 · 55 阅读 · 0 评论 -
GEE生物量碳密度:基于多源遥感数据,实现海南区域生物量碳密度的时空特征分析和可视化。
通过本方法,可快速获取区域尺度的生物量碳密度分布特征,为应对气候变化提供关键数据支持。完整代码链接(https://code.earthengine.google.com/ba4cb1f52477a2e4e94e526f03cbb9eb),欢迎交流改进。本文以海南岛为研究对象,利用Google Earth Engine平台,整合多源遥感数据,实现区域生物量碳密度的时空特征分析。本方法可为热带岛屿生态系统碳汇评估提供技术支撑。原创 2025-05-16 08:00:00 · 62 阅读 · 0 评论 -
GEE生物量预测和可视化:使用Google Earth Engine (GEE) 对德国地区的生物量进行预测和模型评估
GEE生物量计算原创 2025-05-08 09:00:00 · 229 阅读 · 1 评论 -
GEE生物量计算:融合GEDI 生物量数据、冠层高度数据以及 Landsat 8 数据和多种植被指数等多源遥感特征,使用随机森林方法实现森林生物量的估算和下载
本文通过 Google Earth Engine 平台,结合 GEDI 生物量数据、冠层高度数据以及 Landsat 8 数据,计算了多种植被指数,并构建了随机森林模型对生物。原创 2025-04-30 10:30:00 · 434 阅读 · 0 评论 -
GEE碳储量分析:Sentinel-2多光谱数据与生物量碳密度数据(阿尔巴尼亚沿海森林区),构建稳健线性回归模型实现森林碳储量估算。
本文以阿尔巴尼亚沿海森林区为研究对象,利用Google Earth Engine平台,结合Sentinel-2多光谱数据与生物量碳密度数据,构建稳健线性回归模型实现森林碳储量估算。本方法可为区域碳汇监测提供高效解决方案。通过本方法,研究人员可在3小时内完成传统方法需要3个月的碳储量制图工作,为应对气候变化提供关键数据支持。原创 2025-03-25 08:00:00 · 218 阅读 · 1 评论 -
GEE 案例:利用多源遥感数据计算并预测指定森林区域的碳储量及RMSE
WCMC/biomass_carbon_density/v1_0数据是由世界自然保护联盟(WCMC)开发和提供的数据集,用于估算全球各地生物量碳密度。这个数据集提供了全球范围内森林和其他生态系统的生物量碳密度的信息。生物量碳密度是指单位面积上的生物量中的碳含量。它是评估生态系统中的碳储量和碳吸收能力的重要指标。生物量碳密度可以用于估算碳排放和吸收量,以及评估森林和其他生态系统对气候变化的响应和影响。原创 2024-11-04 10:30:00 · 641 阅读 · 0 评论 -
GEE案例分析:全球高分辨率 1 米全球树冠高度地图数据下载
之前写了一篇关于全球树冠高度数据的博客,有人需要下载数据,我们这里就将其数据进行了相关代码展示,具体的介绍这里不再过多介绍请看下面的博客。原创 2024-07-21 16:00:00 · 738 阅读 · 1 评论 -
Landsat/sentinel2/HLS数据集森林生物量影像加载和展示(数据预处理)
Landsat数据集是由美国地质勘探局(USGS)主导的一种卫星遥感数据,用于地球表面的监测和观测。Landsat卫星通过可见光和红外波段采集图像,包括8个波段。Landsat数据集有两个传感器:Landsat 7 ETM+(Enhanced Thematic Mapper Plus)和Landsat 8 OLI(Operational Land Imager)。加载和展示Landsat数据集的流程如下:- 导入必要的Python库,如rasterio和matplotlib。原创 2024-05-18 12:00:00 · 471 阅读 · 0 评论 -
GEE生物量——多源遥感特征变量的相关性分析(pearson相关性分析)表格导出和分析(两种方法)
第一种方法,怎是按照研究区内的样本点的值进行统计,然后对样本点进行分析和统计,再次进行相关性分析,这个方案中用了两个map循环遍历。第二种方式是先分别求出每一个波段,然后改变波段名称,利用双循环分别求出每一个变量去其它所有变量的相关性,最终就可以获得其一个变量域其它所有变量的相关性,直接对研究区操作,而不是对值提取的点进行分析。很多似乎后我们需要进行变量间的相关性分析,这里主要的目的就是我们必须获取两两变量之间的相关性,并且顺利的写入输入。这里建议先进行当地文件保存好csv文件,然后再进行分析。原创 2024-04-01 14:00:00 · 1083 阅读 · 1 评论 -
GEE 森林物候——基于MODIS_061_MOD09A1影像的2000_2022森林物候监测
本教程主要的目的是通过MODIS数据进行2000-2022年的森林物候监测分析,这一篇博客与之前的发布的一篇物候监测相关,只是切换了数据,因为MODIS在大范围监测的过程中更方便,而且8天的重返周期比Landsat数据能更精细化的监测森林的物候变化信息。基于MODIS_061_MOD09A1影像的2000-2022森林物候监测可以通过以下步骤实现:数据获取:从NASA的地球观测系统数据和信息中心(EOSDIS)获取MODIS_061_MOD09A1影像数据。原创 2024-01-25 15:30:00 · 851 阅读 · 0 评论 -
GEE案例——利用归一化建筑物指数NDBI提取1990-2020年长时序森林损毁面积
归一化建筑物指数(Normalized Difference Built-up Index,NDBI)是一种用于评估城市建筑物分布和城市化程度的指数。它基于不同波段的反射率差异,通过红色波段(通常是可见光波段)和近红外波段的反射率来计算。NDBI的计算公式为:其中,SWIR代表短波红外波段的反射率,NIR代表近红外波段的反射率。计算得到的NDBI值范围通常在-1到1之间,数值越高表示建筑物密度越高。NDBI主要用于遥感图像分析和城市研究领域,可以帮助识别和提取城市区域中的建筑物信息。原创 2023-12-18 14:00:00 · 3260 阅读 · 0 评论 -
GEE案例——森林损失面积逐年统计分析(汉森森林数据集)
我们使用汉森森林损失数据集来统计森林面积的损失年份来产看每年的说呢林损失面积。整体只需要一个for循环,因为这里我们已经直到可以统计2002-2022年的森林损失,因此只需要进行转化成矢量来统计即可。同时在代码编写过程中,我们可以设定不同的情况,因为一旦通过外部引入一些时间序列到循环当中,就会出席那json格式,所以这里我们需要进行内部的if条件语句来设定结果。森林损失的统计通常基于卫星遥感和实地考察这两种方法:1. 卫星遥感:利用遥感卫星获取的数据和影像技术,可以检测到森林覆盖率和森林的变化。原创 2023-12-12 09:00:00 · 473 阅读 · 0 评论 -
GEE教程——利用Global 4-class PALSAR-2/PALSAR Forest数据提取指定区域的森林和影像下载
本教程主要的米杜埃是利用 Global 4-class PALSAR-2/PALSAR Forest数据提取指定区域的森林,这个数据集中包含稠密森林和稀疏森林以及非森林和水体,可以按照分类的label来进行提取,这里主要会使用到selfMask()函数来进行掩膜提取。原创 2023-11-20 09:00:00 · 725 阅读 · 0 评论 -
Google Earth Engine(GEE)——多源遥感变量筛选(PCA主成分分析),变量筛选/降维处理
主成分分析(Principal Component Analysis,PCA)是一种常用的数据降维方法,它可以将高维数据降到低维空间中,同时尽量保留原始数据的信息。在生物信息学领域,PCA可以用来进行基因表达数据的分析和可视化。需要注意的是,在进行PCA之前需要对原始数据进行标准化处理,以避免不同特征之间的量纲不同对结果产生影响。很多时候我们需要进行数据的将为和筛选,传统的方法我们可以根绝经验方法进行筛选或者按照变量重要性和相关性进行分析,当然我们可以通过计算多个变量之间的主成分分析来进行变量的筛选。原创 2023-11-22 00:00:00 · 1323 阅读 · 0 评论 -
GEE生物量和碳储量——指定研究区利用遥感影像红色波段阈值(大津法)提取森林范围
提取森林范围可以采用遥感影像红色波段阈值(大津法)的方法,具体步骤如下:1. 打开遥感影像,选择红色波段。2. 运用大津法,自动确定阈值。大津法是一种自适应的二值化方法,能够自动确定最佳阈值,使得目标区域和背景区域的方差之和最小。3. 对红色波段进行二值化处理,将像素值大于阈值的设置为1,小于阈值的设置为0。4. 对二值化结果进行形态学处理,去除小的噪点和空洞,使得森林范围更加精确。5. 将处理后的结果导出为矢量格式,即可得到森林范围的边界。原创 2023-11-19 21:47:47 · 700 阅读 · 0 评论 -
GEE生物量碳储量——利用sens和MK检验方法计算1987-2022年森林地上生物量AGB和碳储量的时空变化特征
本文是将之前已经处理好的森林生物量和碳储量数据保存到GEE Assets中,然后分别将单张影像导入到代码编辑器中,构建一个时间序列集合,并且这里需要用到的是我们给影像添加指定的时间属性,这样方便进行下一步的时序分析和空间预测。首先,需要收集1987年至2022年期间森林地上生物量AGB和碳储量数据。该数据可以通过森林清查数据、卫星遥感数据等途径获取。然后,根据这些数据,可以使用sens(敏感性分析)和MK(Mann-Kendall)方法计算时空变化特征。原创 2023-11-23 08:00:00 · 1049 阅读 · 0 评论 -
GEE生物量碳储量——利用红和近红外波段和OTSU大津法提取纯净森林面积
本文的主要逻辑是利用特定时期的遥感影像的波段,提取指定范围的内的DN值,然后分别统计发生阈值变化的峰值区域,从而作为筛选森林的临界点,如果研究区较大的话则需要先进行影像分割,分割成为相同大小的区域,然后分别计算,这样做的目的有一个好处,就是我们可以尽可能的缩小不同区域影像差异,从而更加准确的提取不同区域的森林面积。因此,在提取纯净森林面积之前,应确定清晰的定义。此外,OTSU大津法和后处理步骤可能需要调整参数,以适应不同的遥感数据和场景。6. 最后,计算提取的像素所占的面积,即纯净森林面积。原创 2023-11-24 09:00:00 · 582 阅读 · 0 评论