- 博客(85)
- 收藏
- 关注
原创 谈一谈甲方售后直接找乙方研发处理故障这种情况
建立分层服务防御体系是解决该问题的核心,(1)用自动化守住第一道防线;(2)用专业化构建第二道屏障;(3)用制度化规范特殊处置。打造持续优化协作模式,实现研发资源的价值最大化。
2025-07-05 09:16:01
206
原创 AI驱动:增强性工具 or 全自主
AI不应该被简单地归类为"工具"或"替代者",而是人类能力的延伸和补充,比较明智的做法是:在重复性、危险性任务中推进自动化,在创造性、伦理性领域保持人类主导。AI不是要取代人类,而是要增强人类的能力边界。——吴恩达。
2025-07-02 14:29:06
207
原创 workflow的可编排协作模式
多帽模式是一种并行分析架构,通过多个具有不同专业视角的Agent同时处理同一任务,最终由聚合器整合多维分析结果。该模式模拟了人类"换位思考"的决策过程。
2025-07-02 13:57:50
1296
原创 Agent系统的知识召回
概述向量:提取标题/首段的语义特征(长度<100 token),适配"什么是XXX"类模糊查询内容向量:编码完整文本的深度语义(长度500-1000 token),解决"如何实现XXX"类细节问题。
2025-07-01 15:30:47
520
原创 MCP 技术与应用总结
当前AI发展存在两大痛点:一是大模型能力受限,像写报告只能基于静态文档无法拉取最新数据库数据,辅助写代码识别不了本地项目结构,且知识停留在训练时的静态内容,难以动态获取实时信息(如查天气)或执行操作(如改文件、调数据库);二是各AI工具操作方式差异大,从文件上传到提示词输入均不统一,跨工具协作繁琐低效。行业调研显示,中等规模AI团队有相当一部分开发时间消耗在工具适配与数据接入上,跨应用协作效率甚至低于重新开发功能。为此亟需标准化接口(如MCP协议),让AI能“即插即用”连接外部能力。
2025-07-01 14:00:51
1188
原创 AIGC 六大赛道
AIGC(AI Generated Content)作为人工智能技术的重要应用方向,已形成覆盖基础设施到垂直场景的完整生态体系。
2025-06-27 13:54:38
305
原创 工程化落地Agent的四个挑战与对应的技术难点
AI Agent被视为企业数字化转型的核心驱动力,但其工程化落地面临多重瓶颈。从技术架构到场景适配,从模型能力到用户体验,每个环节都可能成为阻碍Agent规模化应用的“拦路虎”,其中又分技术工程和和产品工程化两个大维度。
2025-06-24 13:25:04
184
原创 (解读架构图)RL驱动的Agent生成流水线
像一个“智能体的训练流水线”:从存储历史经验(Replay Buffer)开始,通过管理轨迹生命周期(Partial Rollout Manager)触发任务(Async Rollout Service),由决策中枢(Actor Service)生成动作,经安全环境(Sandbox)执行并调用工具(MCP Service),最终通过评分(Reward Service)和归档(Rollout Results)完成一轮的强化学习,进行迭代提升智能体的能力。
2025-06-24 12:04:16
1108
原创 大模型Agent评测数据集建设:从冷启动到持续优化的全流程
数据空白期:无真实用户交互记录,需人工或合成数据填补场景覆盖优先:需人工定义核心业务场景及边界质量不稳定:初期依赖生成数据,需多次迭代优化。
2025-06-24 11:51:57
406
原创 (演讲总结)HDC2025 高峰论坛 :MaaS服务——企业大模型应用落地
原视频:HDC2025 高峰论坛,华为云MaaS创新产品与黑科技,第二场:企业大模型应用落地。
2025-06-23 10:52:34
348
原创 让Agent的应用价值增长
在AI技术快速发展的今天,没有单一一个模型能够应对所有场景的需求。本文系统梳理主流模型分类体系,给出从模型选择到应用落地的技术路线,帮助打造应用价值增长的Agent。
2025-06-20 23:44:28
167
原创 大型语言模型(LLM)的构建模块
生成式AI应用工程师通常具备两个主要条件:(i) 能够利用新的AI构建模块快速开发强大的应用;(ii) 能够借助AI辅助快速完成工程开发,用远少于以往的时间搭建软件系统。
2025-06-17 10:01:53
831
原创 可全链路观测的智能运维平台---功能画像
AI智能运维助手自然语句生成SQL/PromQT/图表,构建业务视角的全链路观测与拓扑展示基于大模型的智能洞察能力,动态识别异常告警,结合应用拓扑和资源依赖关系进行根因分析推导基于大模型的交互式AI助手,解读异常根因以及修复建议。
2025-06-13 14:56:47
239
原创 (读转载文)AI发展的“上半场”与“下半场”
作者认为,随着“通用方案”的成熟,AI发展已进入“下半场”。这一阶段的核心矛盾不再是“能否训练出解决任务的模型”,而是“应该训练AI做什么”以及“如何定义有用的场景 ”。原文核心线:AI从“方法驱动”到“问题驱动”的范式跃迁:上半场:通过算法创新和基准测试推动技术边界,验证了AI在特定任务上的能力;下半场:需以现实需求为导向,重构评估体系,解决“通用配方”与“现实效用”之间的鸿沟。这一转变不仅关乎技术突破,更涉及研究文化、评估标准和产业应用的全面革新——正如作者所言:“欢迎来到下半场!
2025-06-13 14:35:55
698
原创 一切皆服务:MaaS, SaaS,PaaS,BaaS,IaaS
"一切皆服务"的本质是通过云原生技术将复杂能力标准化,用户只需关注业务逻辑而非基础设施。
2025-06-13 13:15:38
334
原创 思辨:AI式人机协作
AI的到来,使得一部分技能的价值下跌,貌似砸了很多人的“饭碗”,特别对我这种工程师,但是我好像从来未产生过被AI替代的焦虑想法。“AI”又不是人,起码现在还不是,怎么会替代人,人会被人替代,特别是懂AI的人,除非自己都不承认人作为"人"拥有的独特灵性。很久前看到的故事,一个大公司的生产设备出现了问题,导致停产,老板邀请了一位有经验的工程师诊断故障,这位技术工程师查看设备后,在电机的线圈处画了一条线,告诉工人们,把线圈搞到这个位置,工人按照它说的,设备果然恢复正常?事情结束后,老板询问应该付多少报酬。
2025-06-13 10:50:05
492
原创 当卷积作用于信号处理
为什么卷积可以作用于以上场景,其一是信号(声音、振动等)的突变特征(如人声频段、轴承冲击)往往在时域或频域呈现局部集中性,而卷积的滑动窗口机制天然适合捕捉这种局部特性。其二是通过人为或数据驱动的核(针对特性)设计,在噪声中提取可表征因果性、相关性、周期性的序列。
2025-06-12 10:46:44
364
原创 数据信号处理方法三板斧
针对数据信号处理,首先要先选择合适的处理方法,在实际应用中,通常三板斧都要上,分阶段处理使得信号表现出“理想”特性。先通过异常值处理剔除冲击分量,再利用时序预测+最优估计修正系统误差(如卡尔曼滤波),最后通过平滑技术抑制随机噪声。三个步骤需根据数据特征(高斯/非高斯、线性/非线性)灵活组合。最终目标是从噪声中还原真实物理量,而非单纯追求平滑与美观。
2025-06-12 10:17:44
509
原创 大模型总“断片”?聊聊AI连续跨轮对话中的“健忘症”怎么来的,用Transformrer怎么修
工具:ima问题:AI完全断片,把健忘体现的淋漓尽致。就像在工作中和某种人对话,前一秒还在开会说这个协议没有体现对数据精度损失的考虑,他接着给你说那就按你喜欢的来的那种🍐🎼感。
2025-06-11 14:36:11
830
原创 C2f模块 vs Darknet-53——YOLOv8检测效率的提升
对比项C2f模块 (YOLOv8)结构核心残差块串联梯度分流 + 跨阶段参数复用计算效率较高复杂度更低计算量(优化30%+)精度提升基础多尺度检测更高mAP(+15-20%)适用场景通用目标检测实时高精度检测任务YOLOv8通过C2f模块重新设计了Backbone,在速度与精度之间达到更优平衡。注:数据参考自Ultralytics官方报告和开源代码实现。
2025-06-11 10:47:12
295
原创 5个常用的主干网络模型
VGG证明深度堆叠,ResNet突破深度限制,Darknet优化实时性,MobileNet/ShuffleNet专攻速度与轻量化。物极必反,不见出路(深度)就回头找出路(残差),网络设计也在轮回,最终走向了好用(效率优先)为先的“实用主义”之路上。
2025-06-11 09:45:27
924
原创 云计算——弹性云服务器(ECS)和裸金属服务器(BMS)
在云计算基础设施领域,**弹性云服务器(ECS)和裸金属服务器(Bare Metal Server,BMS)**是最核心的两类算力产品。前者通过虚拟化技术将物理资源池化,后者直接提供物理机级别的算力。本文将从技术本质、核心差异、适用场景等维度展开对比,帮助企业和开发者找到最适合自身业务的算力方案。ECS和裸金属服务器本质是云时代算力供给的两种形态ECS像"水电煤",灵活便捷,适合大多数通用场景;裸金属服务器像"工业发动机",性能强劲,适合对算力有极致要求的场景。
2025-06-10 13:27:10
1655
原创 从微信读书后台架构看RAG知识召回架构
首行文章链接-图6.1微信读书的RAG检索方案,其核心点在于看重前端用户体验,设计分级索引架构,数据先通过IndexBuilder的“加工线”变成向量、分词等索引,存进COS仓库;当用户发起搜索时,RecallSvr同时从MemSearch(内存快查)、COS的不同货架(向量/分词/正排)、ES(专业检索)调取数据,综合排序后返回结果,达到高效和精准的目标。
2025-06-06 10:57:19
912
原创 云原生玩法三问:构建自定义开发环境
流水线(pipeline)实现通过.cnb.yml实现声明式流水线流水线主要能力:能力维度实现方式业务价值阶段隔离分离 build/deploy 阶段隔离构建环境、运行环境条件触发rules 匹配分支/tag测试环境自动部署生产制品管理推送 Docker 镜像至 CNB 制品库版本追溯,环境一致。
2025-06-06 10:20:21
762
原创 从“remote rejected”看git角色区别,Maintainer和Devoloper
权限能力DeveloperMaintainerOwner创建项目✅✅✅创建分支❌✅✅推送代码到现有分支✅✅✅删除分支❌✅✅合并请求管理✅ (创建/评论)✅ (审核/合并)✅保护分支设置❌✅✅添加/删除项目成员❌❌✅删除仓库❌❌✅CI/CD流水线配置❌✅✅。
2025-06-03 17:36:05
826
原创 git管理
当一个程序员(不管是什么方向的,C++/C/python等)不停的产生代码时,风险一开始就站在了代码背后,类似的问题有送审前夕发现最新改的论文丢了,实验跑出来那一刻要出图的时候发现这个数据不是最新处理过的……相信当过几年学术/工作🐮🐴的同类都有体会。大概是在工作后才开始正视成果的管理科学这件事,一来是,学生时代几乎未参与过大型的工程项目,对管理的需求不是那么迫切;二来是,搞出成果就占据了大部分的精力,谁要给我说分出精力学习怎么管理成果……眼前飘过个凡尔赛的货版本控制代码回溯差异对比分支管理并行开发功能隔
2025-06-03 13:34:33
856
原创 Ubuntu 下同名文件替换后编译链接到旧内容的现象分析
在使用 Ubuntu 操作系统编译程序时,常常会遇到一个问题:当我们替换同名文件内容后,若不改变当前命令行目录,再次编译时,系统实际编译的仍是被覆盖前的旧文件内容。
2025-05-30 22:48:14
506
原创 云原生 Cloud Native Build (CNB)使用初体验
体验下来,有几点值得说一说cnb环境启动速度比较快内置了一些镜像加速服务,包下载和Fork速度比较快预装了自家的AI编程助手CodeBuddy,开箱即用后续计划玩一下CNB的流水线功能,看如何利用其自动化能力来优化CI/CD流程。整体来说,CNB作为云原生开发平台,在开发效率和协作体验上都有亮眼的表现,值得持续关注和使用。
2025-05-30 16:36:41
1554
原创 重说话题“如何写好一份技术文档”
在符号学视角下,技术创作本质是符号系统的构建。特征程序代码技术文档载体形式机器可执行的符号人类可读的符号核心功能实现业务逻辑传递设计思想演化规律需要持续重构需要持续更新质量指标性能/健壮性清晰度/完整性技术文档的价值远不止于记录代码逻辑,它是团队协作的基石,是知识传承的载体,更是个人成长的阶梯。当我们摒弃"代码自解释"的幻想,拥抱"文档即代码"的理念时,我们实际上是在构建一个可持续发展的技术生态。
2025-05-29 19:54:53
262
chatgpt-academic自解读分析报告(gpt-4o-mini model,md格式)
2024-08-12
开源的商业价值是什么(相关搜索:操作系统)
2025-04-29
想做个功能模块的知识图谱,推荐个软件
2024-12-24
TA创建的收藏夹 TA关注的收藏夹
TA关注的人