任何事情都是由量变到质变的过程,学习Python也不例外。只有把一个语言中的常用函数了如指掌了,才能在处理问题的过程中得心应手,快速地找到最优方案。
本文和你一起来探索Python中的toad.metrics.f1_score函数,让你以最短的时间明白这个函数的原理。也可以利用碎片化的时间巩固这个函数,让你在处理工作过程中更高效。之前对模型评价指标F1值原理和实现有过介绍,只是实现方式没有用到toad包,感兴趣的朋友可以看下:模型评价指标—F1值。
文章目录
一、F1值介绍
1 什么是F1值
F1值又称为F1分数(F1-Score):是分类问题的一个衡量指标,它是精确率P(Precision)和召回率R(Recall)的调和平均数。
F1值=2PR/(P+R)
F1值的取值范围(0~1),越接近1说明模型预测效果越好,至于原因详见后文。
2 理解F1值的一个小例子
假设1代表涉赌涉诈账户,0代表非涉赌涉诈的低风险账户。