【Python常用函数】一文让你彻底掌握Python中的f1_score函数

任何事情都是由量变到质变的过程,学习Python也不例外。只有把一个语言中的常用函数了如指掌了,才能在处理问题的过程中得心应手,快速地找到最优方案。
  
本文和你一起来探索Python中的toad.metrics.f1_score函数,让你以最短的时间明白这个函数的原理。也可以利用碎片化的时间巩固这个函数,让你在处理工作过程中更高效。之前对模型评价指标F1值原理和实现有过介绍,只是实现方式没有用到toad包,感兴趣的朋友可以看下:模型评价指标—F1值

一、F1值介绍

  

1 什么是F1值

  
F1值又称为F1分数(F1-Score):是分类问题的一个衡量指标,它是精确率P(Precision)和召回率R(Recall)的调和平均数。
  
          F1值=2PR/(P+R)
  
F1值的取值范围(0~1),越接近1说明模型预测效果越好,至于原因详见后文。

  

2 理解F1值的一个小例子

  
假设1代表涉赌涉诈账户,0代表非涉赌涉诈的低风险账户。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿黎逸阳

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值