一开始看到“仿射”这个名词时,我并不明白什么意思,后来通过例子明白其实仿射变换和透视变换更直观的叫法可以叫做“平面变换”和“空间变换”或者“二维坐标变换”和“三维坐标变换”。
定义:仿射变换,又称仿射映射,是指在几何中,一个向量空间进行一次线性变换并接上一个平移,变换为另一个向量空间。
仿射变换能够保持图像的“平直性”,包括旋转,缩放,平移,错切操作。一般而言,仿射变换矩阵为2*3的矩阵,第三列的元素起着平移的作用,前面两列的数字对角线上是缩放,其余为旋转或者错切的作用。
对应数学表达式为:
对应的齐次坐标矩阵表示形式为:
其中A为变换后坐标矩阵,C为原始坐标矩阵,B是仿射变换矩阵,有6个未知量,假设目标图形以(x , y
)为轴心顺时针旋转θ弧度到目标图像,则变换矩阵对应的变量为:
所以前两列的4个未知量a,b,d,e是起到旋转的作用,第三列的2个未知量c,f起到了平移的作用。仿射变换的方程组有6个未知数,所以要求解就需要找到3组映射点,三个点刚好确定一个平面。