凹多边形分解:轻松切蛋糕的算法艺术

摘要

凹多边形的凸分解可通过"耳切法"和"对角线分割法"实现。耳切法通过不断切除"耳朵"(内部无其他顶点的三角形)将凹多边形分解为多个三角形;对角线分割法通过连接内部对角线将多边形分割为更小的凸多边形。这些方法可简化碰撞检测、面积计算等几何处理。文章提供了形象比喻(切蛋糕、拼图)和C#耳切法的核心实现代码,包括判断凸角、检测内部点等关键函数,适用于游戏开发或计算机图形学中的多边形处理需求。


1. 形象比喻

比喻一:切蛋糕

想象你有一块形状奇怪的蛋糕(凹多边形),有些地方还凹进去。你想把它切成几块,每一块都要是“鼓起来”的(凸多边形),这样每块都容易分给小朋友吃。

你不能随便乱切,得保证每一刀都把蛋糕分成更简单的形状,最后每一块都没有“凹进去”的地方。

比喻二:拼图

你有一块复杂的拼图(凹多边形),你要把它拆成几块简单的拼图块(凸多边形),这样每一块都很规整,没有“内凹”的角。


2. 为什么要凸分解?

  • 凸多边形的碰撞检测、面积计算等都很简单。
  • 凹多边形处理起来很麻烦,所以先拆成凸的,再分别处理。

3. 怎么拆?(常见方法)

方法一:耳切法(Ear Clipping)

形象解释

想象你在蛋糕边缘找一个“小耳朵”——就是一个三角形,这个三角形的两个边是蛋糕的边,第三条边在蛋糕里面,而且这个三角形里面没有别的蛋糕部分。

你把这个“小耳朵”切下来,剩下的蛋糕还是一个多边形。你继续找下一个“小耳朵”,再切……一直切到只剩下三角形为止。

过程总结
  1. 找到一个“耳朵”三角形(即三角形内部没有其他顶点)。
  2. 切下来(记录这个三角形)。
  3. 在剩下的多边形上重复1、2,直到全部切完。
结果
  • 你把凹多边形拆成了若干个三角形(三角形一定是凸的)。
  • 如果需要更大的凸多边形,可以把相邻的三角形再合并。

方法二:对角线分割法

形象解释

你在蛋糕的两个不相邻的顶点之间拉一根线(对角线),只要这根线完全在蛋糕里面,就可以把蛋糕分成两块。你不断地拉线、分块,直到每一块都是凸的。

过程总结
  1. 找到可以画的对角线(不穿出多边形)。
  2. 画线,把多边形分成两块。
  3. 对每一块重复1、2,直到每一块都是凸多边形。

4. 生活化小结

  • 耳切法就像“顺着边找小三角,切下来”,直到全是三角形。
  • 对角线分割法就像“拉线分块”,每次都把蛋糕分成更简单的形状。

5. C#伪代码(耳切法核心思路)

// 假设 polygon 是顶点顺序的 List<Vector2>
List<Triangle> Triangulate(List<Vector2> polygon)
{
    List<Triangle> triangles = new List<Triangle>();
    List<Vector2> poly = new List<Vector2>(polygon);

    while (poly.Count > 3)
    {
        bool earFound = false;
        for (int i = 0; i < poly.Count; i++)
        {
            Vector2 prev = poly[(i - 1 + poly.Count) % poly.Count];
            Vector2 curr = poly[i];
            Vector2 next = poly[(i + 1) % poly.Count];

            // 判断三角形(prev, curr, next)是否是“耳朵”
            if (IsConvex(prev, curr, next) && NoOtherPointInTriangle(poly, prev, curr, next))
            {
                triangles.Add(new Triangle(prev, curr, next));
                poly.RemoveAt(i);
                earFound = true;
                break;
            }
        }
        if (!earFound) break; // 失败,可能不是简单多边形
    }
    // 剩下最后一个三角形
    if (poly.Count == 3)
        triangles.Add(new Triangle(poly[0], poly[1], poly[2]));
    return triangles;
}

其中IsConvex判断三点是否为凸角,NoOtherPointInTriangle判断三角形内部是否有其他顶点。


6. 总结

  • 凹多边形的凸分解,就是把复杂的“蛋糕”切成若干个“鼓起来”的小块。
  • 最常用的方法是耳切法,每次切下一个“小耳朵”三角形。
  • 这样分解后,每一块都容易处理,尤其适合做碰撞检测等。

详细的C#实现代码、或更复杂的凸分解算法

下面我会给你:

  1. 详细的C#耳切法三角剖分代码(可直接用于凹多边形分解为三角形,三角形天然是凸的)
  2. 简要介绍更复杂的凸分解算法(如Bayazit、Hertel-Mehlhorn等),并给出思路和参考资源。

一、C#耳切法三角剖分详细实现

1. 基本数据结构

public struct Vector2
{
    public float x, y;
    public Vector2(float x, float y) { this.x = x; this.y = y; }
}

public struct Triangle
{
    public Vector2 a, b, c;
    public Triangle(Vector2 a, Vector2 b, Vector2 c) { this.a = a; this.b = b; this.c = c; }
}

2. 判断三点是否为凸角

// 计算向量叉积
float Cross(Vector2 a, Vector2 b, Vector2 c)
{
    float abx = b.x - a.x, aby = b.y - a.y;
    float bcx = c.x - b.x, bcy = c.y - b.y;
    return abx * bcy - aby * bcx;
}

// 判断三点是否为凸角(假设多边形为逆时针)
bool IsConvex(Vector2 prev, Vector2 curr, Vector2 next)
{
    return Cross(prev, curr, next) > 0;
}

3. 判断三角形内是否有其他点

// 判断点p是否在三角形abc内
bool PointInTriangle(Vector2 p, Vector2 a, Vector2 b, Vector2 c)
{
    float d1 = Cross(p, a, b);
    float d2 = Cross(p, b, c);
    float d3 = Cross(p, c, a);
    bool has_neg = (d1 < 0) || (d2 < 0) || (d3 < 0);
    bool has_pos = (d1 > 0) || (d2 > 0) || (d3 > 0);
    return !(has_neg && has_pos);
}

// 判断三角形abc内是否有多边形的其他顶点
bool NoOtherPointInTriangle(List<Vector2> poly, Vector2 a, Vector2 b, Vector2 c)
{
    foreach (var p in poly)
    {
        if ((p.x == a.x && p.y == a.y) || (p.x == b.x && p.y == b.y) || (p.x == c.x && p.y == c.y))
            continue;
        if (PointInTriangle(p, a, b, c))
            return false;
    }
    return true;
}

4. 耳切法主函数

public List<Triangle> Triangulate(List<Vector2> polygon)
{
    List<Triangle> triangles = new List<Triangle>();
    List<Vector2> poly = new List<Vector2>(polygon);

    // 保证多边形为逆时针
    if (!IsCounterClockwise(poly))
        poly.Reverse();

    while (poly.Count > 3)
    {
        bool earFound = false;
        for (int i = 0; i < poly.Count; i++)
        {
            Vector2 prev = poly[(i - 1 + poly.Count) % poly.Count];
            Vector2 curr = poly[i];
            Vector2 next = poly[(i + 1) % poly.Count];

            if (IsConvex(prev, curr, next) && NoOtherPointInTriangle(poly, prev, curr, next))
            {
                triangles.Add(new Triangle(prev, curr, next));
                poly.RemoveAt(i);
                earFound = true;
                break;
            }
        }
        if (!earFound)
        {
            // 失败,可能是自交多边形
            break;
        }
    }
    if (poly.Count == 3)
        triangles.Add(new Triangle(poly[0], poly[1], poly[2]));
    return triangles;
}

// 判断多边形是否逆时针
bool IsCounterClockwise(List<Vector2> poly)
{
    float sum = 0;
    for (int i = 0; i < poly.Count; i++)
    {
        Vector2 a = poly[i];
        Vector2 b = poly[(i + 1) % poly.Count];
        sum += (b.x - a.x) * (b.y + a.y);
    }
    return sum < 0;
}

5. 使用示例

List<Vector2> polygon = new List<Vector2>
{
    new Vector2(0, 0),
    new Vector2(2, 0),
    new Vector2(2, 1),
    new Vector2(1, 0.5f),
    new Vector2(2, 2),
    new Vector2(0, 2)
};

List<Triangle> tris = Triangulate(polygon);
foreach (var t in tris)
{
    Console.WriteLine($"Triangle: ({t.a.x},{t.a.y}) - ({t.b.x},{t.b.y}) - ({t.c.x},{t.c.y})");
}

二、更复杂的凸分解算法

三角剖分是最基础的凸分解。更高级的凸分解算法可以把凹多边形分成更少的凸多边形(不一定都是三角形),常见的有:

1. Bayazit Convex Decomposition

  • 递归地寻找凹点,从凹点出发,找到一条对角线将多边形分成两块,直到所有子多边形都是凸的。
  • 结果通常比三角剖分更优(块数更少)。

C#实现参考:

2. Hertel-Mehlhorn 算法

  • 先三角剖分,再合并相邻三角形为更大的凸多边形,直到不能再合并。
  • 结果通常比三角剖分更优,且实现相对简单。

C#实现思路:

  1. 先用耳切法三角剖分。
  2. 检查每对相邻三角形,尝试合并成更大的凸多边形(判断合并后是否仍为凸)。
  3. 重复直到不能再合并。

3. 参考库


三、总结

  • 耳切法三角剖分是最常用、最简单的凸分解方法,代码如上。
  • 更优的凸分解(如Bayazit、Hertel-Mehlhorn)能得到更少的凸块,适合物理引擎和高效碰撞检测。
  • 推荐先用三角剖分,后续如有性能或块数需求,再用更复杂的算法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

你一身傲骨怎能输

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值