摘要
凹多边形的凸分解可通过"耳切法"和"对角线分割法"实现。耳切法通过不断切除"耳朵"(内部无其他顶点的三角形)将凹多边形分解为多个三角形;对角线分割法通过连接内部对角线将多边形分割为更小的凸多边形。这些方法可简化碰撞检测、面积计算等几何处理。文章提供了形象比喻(切蛋糕、拼图)和C#耳切法的核心实现代码,包括判断凸角、检测内部点等关键函数,适用于游戏开发或计算机图形学中的多边形处理需求。
1. 形象比喻
比喻一:切蛋糕
想象你有一块形状奇怪的蛋糕(凹多边形),有些地方还凹进去。你想把它切成几块,每一块都要是“鼓起来”的(凸多边形),这样每块都容易分给小朋友吃。
你不能随便乱切,得保证每一刀都把蛋糕分成更简单的形状,最后每一块都没有“凹进去”的地方。
比喻二:拼图
你有一块复杂的拼图(凹多边形),你要把它拆成几块简单的拼图块(凸多边形),这样每一块都很规整,没有“内凹”的角。
2. 为什么要凸分解?
- 凸多边形的碰撞检测、面积计算等都很简单。
- 凹多边形处理起来很麻烦,所以先拆成凸的,再分别处理。
3. 怎么拆?(常见方法)
方法一:耳切法(Ear Clipping)
形象解释
想象你在蛋糕边缘找一个“小耳朵”——就是一个三角形,这个三角形的两个边是蛋糕的边,第三条边在蛋糕里面,而且这个三角形里面没有别的蛋糕部分。
你把这个“小耳朵”切下来,剩下的蛋糕还是一个多边形。你继续找下一个“小耳朵”,再切……一直切到只剩下三角形为止。
过程总结
- 找到一个“耳朵”三角形(即三角形内部没有其他顶点)。
- 切下来(记录这个三角形)。
- 在剩下的多边形上重复1、2,直到全部切完。
结果
- 你把凹多边形拆成了若干个三角形(三角形一定是凸的)。
- 如果需要更大的凸多边形,可以把相邻的三角形再合并。
方法二:对角线分割法
形象解释
你在蛋糕的两个不相邻的顶点之间拉一根线(对角线),只要这根线完全在蛋糕里面,就可以把蛋糕分成两块。你不断地拉线、分块,直到每一块都是凸的。
过程总结
- 找到可以画的对角线(不穿出多边形)。
- 画线,把多边形分成两块。
- 对每一块重复1、2,直到每一块都是凸多边形。
4. 生活化小结
- 耳切法就像“顺着边找小三角,切下来”,直到全是三角形。
- 对角线分割法就像“拉线分块”,每次都把蛋糕分成更简单的形状。
5. C#伪代码(耳切法核心思路)
// 假设 polygon 是顶点顺序的 List<Vector2>
List<Triangle> Triangulate(List<Vector2> polygon)
{
List<Triangle> triangles = new List<Triangle>();
List<Vector2> poly = new List<Vector2>(polygon);
while (poly.Count > 3)
{
bool earFound = false;
for (int i = 0; i < poly.Count; i++)
{
Vector2 prev = poly[(i - 1 + poly.Count) % poly.Count];
Vector2 curr = poly[i];
Vector2 next = poly[(i + 1) % poly.Count];
// 判断三角形(prev, curr, next)是否是“耳朵”
if (IsConvex(prev, curr, next) && NoOtherPointInTriangle(poly, prev, curr, next))
{
triangles.Add(new Triangle(prev, curr, next));
poly.RemoveAt(i);
earFound = true;
break;
}
}
if (!earFound) break; // 失败,可能不是简单多边形
}
// 剩下最后一个三角形
if (poly.Count == 3)
triangles.Add(new Triangle(poly[0], poly[1], poly[2]));
return triangles;
}
其中
IsConvex
判断三点是否为凸角,NoOtherPointInTriangle
判断三角形内部是否有其他顶点。
6. 总结
- 凹多边形的凸分解,就是把复杂的“蛋糕”切成若干个“鼓起来”的小块。
- 最常用的方法是耳切法,每次切下一个“小耳朵”三角形。
- 这样分解后,每一块都容易处理,尤其适合做碰撞检测等。
详细的C#实现代码、或更复杂的凸分解算法
下面我会给你:
- 详细的C#耳切法三角剖分代码(可直接用于凹多边形分解为三角形,三角形天然是凸的)
- 简要介绍更复杂的凸分解算法(如Bayazit、Hertel-Mehlhorn等),并给出思路和参考资源。
一、C#耳切法三角剖分详细实现
1. 基本数据结构
public struct Vector2
{
public float x, y;
public Vector2(float x, float y) { this.x = x; this.y = y; }
}
public struct Triangle
{
public Vector2 a, b, c;
public Triangle(Vector2 a, Vector2 b, Vector2 c) { this.a = a; this.b = b; this.c = c; }
}
2. 判断三点是否为凸角
// 计算向量叉积
float Cross(Vector2 a, Vector2 b, Vector2 c)
{
float abx = b.x - a.x, aby = b.y - a.y;
float bcx = c.x - b.x, bcy = c.y - b.y;
return abx * bcy - aby * bcx;
}
// 判断三点是否为凸角(假设多边形为逆时针)
bool IsConvex(Vector2 prev, Vector2 curr, Vector2 next)
{
return Cross(prev, curr, next) > 0;
}
3. 判断三角形内是否有其他点
// 判断点p是否在三角形abc内
bool PointInTriangle(Vector2 p, Vector2 a, Vector2 b, Vector2 c)
{
float d1 = Cross(p, a, b);
float d2 = Cross(p, b, c);
float d3 = Cross(p, c, a);
bool has_neg = (d1 < 0) || (d2 < 0) || (d3 < 0);
bool has_pos = (d1 > 0) || (d2 > 0) || (d3 > 0);
return !(has_neg && has_pos);
}
// 判断三角形abc内是否有多边形的其他顶点
bool NoOtherPointInTriangle(List<Vector2> poly, Vector2 a, Vector2 b, Vector2 c)
{
foreach (var p in poly)
{
if ((p.x == a.x && p.y == a.y) || (p.x == b.x && p.y == b.y) || (p.x == c.x && p.y == c.y))
continue;
if (PointInTriangle(p, a, b, c))
return false;
}
return true;
}
4. 耳切法主函数
public List<Triangle> Triangulate(List<Vector2> polygon)
{
List<Triangle> triangles = new List<Triangle>();
List<Vector2> poly = new List<Vector2>(polygon);
// 保证多边形为逆时针
if (!IsCounterClockwise(poly))
poly.Reverse();
while (poly.Count > 3)
{
bool earFound = false;
for (int i = 0; i < poly.Count; i++)
{
Vector2 prev = poly[(i - 1 + poly.Count) % poly.Count];
Vector2 curr = poly[i];
Vector2 next = poly[(i + 1) % poly.Count];
if (IsConvex(prev, curr, next) && NoOtherPointInTriangle(poly, prev, curr, next))
{
triangles.Add(new Triangle(prev, curr, next));
poly.RemoveAt(i);
earFound = true;
break;
}
}
if (!earFound)
{
// 失败,可能是自交多边形
break;
}
}
if (poly.Count == 3)
triangles.Add(new Triangle(poly[0], poly[1], poly[2]));
return triangles;
}
// 判断多边形是否逆时针
bool IsCounterClockwise(List<Vector2> poly)
{
float sum = 0;
for (int i = 0; i < poly.Count; i++)
{
Vector2 a = poly[i];
Vector2 b = poly[(i + 1) % poly.Count];
sum += (b.x - a.x) * (b.y + a.y);
}
return sum < 0;
}
5. 使用示例
List<Vector2> polygon = new List<Vector2>
{
new Vector2(0, 0),
new Vector2(2, 0),
new Vector2(2, 1),
new Vector2(1, 0.5f),
new Vector2(2, 2),
new Vector2(0, 2)
};
List<Triangle> tris = Triangulate(polygon);
foreach (var t in tris)
{
Console.WriteLine($"Triangle: ({t.a.x},{t.a.y}) - ({t.b.x},{t.b.y}) - ({t.c.x},{t.c.y})");
}
二、更复杂的凸分解算法
三角剖分是最基础的凸分解。更高级的凸分解算法可以把凹多边形分成更少的凸多边形(不一定都是三角形),常见的有:
1. Bayazit Convex Decomposition
- 递归地寻找凹点,从凹点出发,找到一条对角线将多边形分成两块,直到所有子多边形都是凸的。
- 结果通常比三角剖分更优(块数更少)。
C#实现参考:
- Farseer Physics Engine(Aether.Physics2D库)
- Box2D C#移植(C++,但思路类似)
2. Hertel-Mehlhorn 算法
- 先三角剖分,再合并相邻三角形为更大的凸多边形,直到不能再合并。
- 结果通常比三角剖分更优,且实现相对简单。
C#实现思路:
- 先用耳切法三角剖分。
- 检查每对相邻三角形,尝试合并成更大的凸多边形(判断合并后是否仍为凸)。
- 重复直到不能再合并。
3. 参考库
- ClipperLib(C#多边形布尔运算库,含三角剖分)
- Aether.Physics2D(含Bayazit分解)
三、总结
- 耳切法三角剖分是最常用、最简单的凸分解方法,代码如上。
- 更优的凸分解(如Bayazit、Hertel-Mehlhorn)能得到更少的凸块,适合物理引擎和高效碰撞检测。
- 推荐先用三角剖分,后续如有性能或块数需求,再用更复杂的算法。