传统方式
主要是一些特征提取+滤波类搜索算法。
其中特征提取主要有:局部、全局特征、模板、直方图、binary pattern、PCA、sparse PCA、SR(sparse representation)、 discriminative model、generative model。
对于搜索机制:CSK、KCF/DCF、CN、粒子滤波、马尔可夫链蒙特卡罗法、局部最优搜索、密集抽样搜索。
深度学习方式
1、tracking-by-detection方式
主要针对目标检测算法和滤波类算法(多目标跟踪),yolo系列、SSD系列、anchor-free系列、two-stage系列等等,滤波类和上述传统方式相似。
2、基于Siamese Networks(生成式,主要针对单目标)
主要通过Siamese网络进行相似度匹配,主要操作为:首先手动选择初始图像中的目标,使用Siamese网络进行特征提取,然后以此特征为标准,遍历后面帧图像的每个位置,对每个位置进行特征提取,然后做比较,确定位置。
端到端方式
主要通过深度学习方式(RNN和LSTM),不过该方式速度较慢,相比于传统方式效果也没有很大的提升,现阶段几乎没有落地。
KITTI上的目标跟踪算法(benchmark)