
算法工程
文章平均质量分 78
真·skysys
MSc@UCAS | Interest: AGI & Web3 & Security | 今年秋招,求职ing,合适的机会可以私信我
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【大模型提效】Towards Automated Cross-domain Exploratory Data Analysis through Large Language Models
探索性数据分析 (EDA) 与 SQL 相结合,对于涉及数据探索和分析的数据分析师至关重要。然而,数据分析师经常面临两个主要挑战:(1)需要巧妙地制作 SQL 查询,以及(2)需要生成合适的可视化类型来增强查询结果的解释。由于其重要性,已经进行了大量研究工作来探索解决这些挑战的不同方法,包括利用大型语言模型 (LLM)。然而,现有的方法不能满足现实世界的数据探索要求,主要是由于(1)复杂的数据库模式;(2)用户意图不明确;(3)跨域泛化能力有限;(4)端到端文本到可视化能力不足。原创 2025-03-21 23:05:23 · 791 阅读 · 3 评论 -
讲座 # 营销增长技术在O2O电商上的应用
滴滴出行技术专家在学校科普讲座的技术分享和职业生涯规划建议原创 2023-02-16 20:40:09 · 280 阅读 · 0 评论 -
模型落地部署 # 使用 OpenSearch 托管机器学习/深度学习模型进行模型服务化 Model-serving
OpenSearch ML Commons 通过 REST API 提供机器学习算法。支持同步/异步训练 ML 算法、基于训练好的模型进行预测。权限:opensearch 中 ml_full_access、ml_readonly_access 权限的用户可以使用 ML 功能。为了防止 opensearch cluster 在运行 ML 任务时失败,可以(但不必要)配置一个 ML node。原创 2023-01-31 09:31:43 · 1088 阅读 · 1 评论 -
算法工程 # 深度学习算法落地最后一公里:工业界中的大规模向量检索
现代深度学习实践中很多场景其实都是对输入数据进行处理、嵌入,最终获得一个 embedding,然后对 embedding 进行相似度检索,而工业界中的被检索数据往往是海量的,因此深度学习模型落地的最后一步也就是大规模向量检索。本文介绍在工业界实践中常用的向量检索方案。原创 2023-01-09 02:18:44 · 1538 阅读 · 0 评论