生成树计数

生成树计数,取摸
//HDU4305
#include <stdio.h>
#include <algorithm>
#include <iostream>
#include <string.h>
#include <vector>
#include <queue>
#include <map>
#include <set>
#include <list>
#include <string>
#include <math.h>
using namespace std;

struct Point
{
    int x,y;
    Point(int _x = 0,int _y = 0)
    {
        x = _x,y = _y;
    }
    Point operator - (const Point &b)const
    {
        return Point(x-b.x,y-b.y);
    }
    int operator ^(const Point &b)const
    {
        return x*b.y - y*b.x;
    }
    void input()
    {
        scanf("%d%d",&x,&y);
    }
};
struct Line
{
    Point s,e;
    Line(){}
    Line(Point _s,Point _e)
    {
        s = _s;
        e = _e;
    }
};
bool onSeg(Point P,Line L)
{
    return
    ((L.s-P)^(L.e-P)) == 0 &&
    (P.x-L.s.x)*(P.x-L.e.x) <= 0 &&
    (P.y-L.s.y)*(P.y-L.e.y) <= 0;
}
int sqdis(Point a,Point b)
{
    return (a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y);
}

const int MOD = 10007;
int INV[MOD];
//求ax = 1( mod m) 的x值,就是逆元(0<a<m)
long long inv(long long a,long long m)
{
    if(a == 1)return 1;
    return inv(m%a,m)*(m-m/a)%m;
}
struct Matrix
{
    int mat[330][330];
    void init()
    {
        memset(mat,0,sizeof(mat));
    }
    int det(int n)//求行列式的值模上MOD,需要使用逆元
    {
        for(int i = 0;i < n;i++)
            for(int j = 0;j < n;j++)
                mat[i][j] = (mat[i][j]%MOD+MOD)%MOD;
        int res = 1;
        for(int i = 0;i < n;i++)
        {
            for(int j = i;j < n;j++)
                if(mat[j][i]!=0)
                {
                    for(int k = i;k < n;k++)
                        swap(mat[i][k],mat[j][k]);
                    if(i != j)
                        res = (-res+MOD)%MOD;
                    break;
                }
            if(mat[i][i] == 0)
            {
                res = -1;//不存在(也就是行列式值为0)
                break;
            }
            for(int j = i+1;j < n;j++)
            {
                //int mut = (mat[j][i]*INV[mat[i][i]])%MOD;//打表逆元
                int mut = (mat[j][i]*inv(mat[i][i],MOD))%MOD;
                for(int k = i;k < n;k++)
                    mat[j][k] = (mat[j][k]-(mat[i][k]*mut)%MOD+MOD)%MOD;
            }
            res = (res * mat[i][i])%MOD;
        }
        return res;
    }
};

Point p[330];
int n,R;
bool check(int k1,int k2)//判断两点的距离小于等于R,而且中间没有点阻隔
{
    if(sqdis(p[k1],p[k2]) > R*R)return false;
    for(int i = 0;i < n;i++)
        if(i!=k1 && i!=k2)
            if(onSeg(p[i],Line(p[k1],p[k2])))
                return false;
    return true;
}
int g[330][330];
int main()
{
    //预处理逆元
    for(int i = 1;i < MOD;i++)
        INV[i] = inv(i,MOD);
    int T;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d%d",&n,&R);
        for(int i = 0;i < n;i++)
            p[i].input();
        memset(g,0,sizeof(g));
        for(int i = 0;i < n;i++)
            for(int j = i+1;j <n;j++)
                if(check(i,j))
                    g[i][j] = g[j][i] = 1;
        Matrix ret;
        ret.init();
        for(int i = 0;i < n;i++)
            for(int j = 0;j < n;j++)
                if(i != j && g[i][j])
                {
                    ret.mat[i][j] = -1;
                    ret.mat[i][i]++;
                }
        printf("%d\n",ret.det(n-1));
    }
    return 0;
}
生成树计数 不取摸
//spoj104
来自 http://blog.csdn.net/u011699990/article/details/45182125
#include <cstdio>
#include <iostream>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <string.h>
#include <string>
#include <vector>
#include <queue>

#define MEM(a,x) memset(a,x,sizeof a)
#define eps 1e-8
#define MOD 10009
#define MAXN 110
#define MAXM 100010
#define INF 99999999
#define ll __int64
#define bug cout<<"here"<<endl
#define fread freopen("ceshi.txt","r",stdin)
#define fwrite freopen("out.txt","w",stdout)

using namespace std;

int sgn(double x){
    if(fabs(x)<eps) return 0;
    if(x<0) return -1;
    else return 1;
}
double b[MAXN][MAXN];
double det(double a[][MAXN],int n){
    int i,j,k,sign=0;
    double ret=1;
    for(i=0;i<n;i++)
        for(j=0;j<n;j++)
            b[i][j]=a[i][j];
    for(i=0;i<n;i++){
        if(sgn(b[i][i])==0){
            for(j=i+1;j<n;j++)
                if(sgn(b[j][i])!=0)
                    break;
            if(j==n) return 0;
            for(k=i;k<n;k++)
                swap(b[i][k],b[j][k]);
            sign++;
        }
        ret*=b[i][i];
        for(k=i+1;k<n;k++)
            b[i][k]/=b[i][i];
        for(j=i+1;j<n;j++)
            for(k=i+1;k<n;k++)
                b[j][k]-=b[j][i]*b[i][k];
    }
    if(sign&1) ret=-ret;
    return ret;
}
double a[MAXN][MAXN];
int g[MAXN][MAXN];

int main(){
    int tc;
    scanf("%d",&tc);
    while(tc--){
        int n,m;
        scanf("%d%d",&n,&m);
        MEM(g,0);
        while(m--){
            int u,v;
            scanf("%d%d",&u,&v);
            u--; v--;
            g[u][v]=g[v][u]=1;
        }
        MEM(a,0);
        for(int i=0;i<n;i++)
            for(int j=0;j<n;j++)
                if(i!=j&&g[i][j]){
                    a[i][i]++;
                    a[i][j]=-1;
                }
        double ans=det(a,n-1);
        printf("%.0lf\n",ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值