【解读】Three-dimensional imaging through scatteringmedia based on confocal diffuse tomography

基于共焦漫射断层扫描的散射介质三维成像技术研究总结

一、研究背景与挑战

1. 散射介质对光学成像的限制

  • 应用场景:LiDAR 等光学成像技术在遥感、自动驾驶、生物医学成像等领域至关重要,但雾、雨、灰尘、组织等散射介质会显著降低成像性能。
  • 现有技术瓶颈
    • 弹道光子技术(如时间门控、相干门控)依赖未散射光子,仅适用于短距离或低散射场景,且三维成像需目标位置先验知识。
    • 干涉方法(如散斑相关、波前整形)受限于 “记忆效应”,仅适用于微观尺度或有限视场。
    • ** 漫射光学断层扫描(DOT)** 虽适用于厚散射介质,但传统方法需侵入式测量(接触介质两侧)、计算复杂或仅限二维重建。

2. 研究目标

开发非侵入式、高效的三维成像技术,突破宏观厚散射介质(如≈6 个输运平均自由程)下的成像限制,无需目标位置先验知识。

二、核心技术:共焦漫射断层扫描(CDT)

1. 硬件设计

  • 单光子雪崩二极管(SPAD):单像素高灵敏度探测器,时间分辨率达皮秒级,配合时间门控技术滤除介质表面直接反射光,捕捉后期到达的物体散射光子。
  • 超短脉冲激光:35 ps 脉冲宽度,532 nm 波长,10 MHz 重复率,扫描镜控制下对散射介质表面 32×32 点网格进行逐点照明与探测。
  • 共焦扫描系统:激光与 SPAD 共光路,聚焦于同一散射介质表面点,实现 “照明 - 探测” 共焦模式,减少横向散射干扰。

2. 成像模型与理论

  • 扩散方程求解:针对 2.54 cm 厚聚氨酯泡沫散射介质,采用外推边界条件和多极子源近似(镜像法),建模光在介质中的双向扩散传输,计算光强随时间和空间的分布。
  • 共焦近似简化:假设照明与探测点相同(r1​≈r2​),将复杂光传输路径简化为 “介质扩散 - 自由空间传播 - 介质扩散” 的卷积模型,降低计算复杂度。
  • 测量模型:τ^(t,r0​)=ϕˉ​∗I(t,r1​,r1​)
    其中ϕˉ​为介质扩散核,I为自由空间传播算子(含物体反射特性)。

3. 反演方法

  • 维纳去卷积与 f-k 迁移:频域滤波结合非视距成像中的光锥变换(Light-Cone Transform),从时间分辨测量中恢复物体反照率分布,计算复杂度为O(N3logN),支持 CPU/GPU 高效计算。
  • 噪声处理:考虑泊松噪声的迭代反演算法,提升低信噪比场景下的重建质量。

三、实验验证

1. 实验设置

  • 散射介质:2.54 cm 厚聚氨酯泡沫,输运平均自由程≈3.8 mm,吸收系数μa​=5.26×10−3cm−1,约化散射系数μs′​=2.62cm−1。
  • 隐藏物体:距介质 50 cm 处的 retroreflective 字母 “S”、漫反射字母、人体模型、交通锥等,轴向距离范围 45–78 cm。
  • 测量参数:扫描范围 60×60 cm,时间分辨率 70 ps,单像素曝光 60 ms,总采集时间约 1 分钟。

2. 关键结果

  • 三维重建能力:成功恢复隐藏物体的形状、位置和深度,包括漫反射物体(需更长曝光),轴向分辨率≈9 cm,横向分辨率≈15 cm(50 cm 距离下)。
  • 对比优势:相较时间门控技术,CDT 利用散射光子信息,在厚介质下成像质量显著提升;计算效率高,32×32×128 体素重建耗时仅 300 ms(CPU)或 50 ms(GPU)。

四、讨论与未来方向

1. 分辨率与限制

  • 轴向分辨率:由介质扩散时间决定,Δz≈cΔtd​,其中Δtd​为双向扩散时间(实验中≈632 ps)。
  • 横向分辨率:受扫描范围和距离影响,Δx∝w2+H2​/w(w为扫描半宽,H为物体距离)。
  • 均匀介质假设:当前模型适用于均匀散射层,未来可扩展至非均匀介质(需求解辐射传输方程)。

2. 技术扩展与应用

  • 探测器升级:结合超导纳米线单光子探测器(更高时间分辨率)或硅光电倍增管(SiPM,多光子计数),提升远距离或高散射场景下的灵敏度。
  • 场景拓展:自动驾驶(雾 / 雨天气)、生物医学(深层组织成像)、遥感(大气散射层穿透)等,无需目标先验知识的特性显著增强实用性。

3. 结论

CDT 通过硬件 - 算法协同设计,突破传统散射成像限制,实现非侵入式、高效的宏观三维成像,为复杂散射环境下的光学感知提供了新范式。

五、数据与代码



Q1:这篇文章如何处理,使得得到原被阻挡的图像

斯坦福大学团队提出的共焦漫射断层扫描(CDT)技术,通过硬件 - 物理模型 - 算法协同设计,实现了散射介质后隐藏物体的三维图像重建。以下是其处理被阻挡图像的核心原理与步骤,结合论文细节与实验验证展开说明:

一、硬件层:时间分辨 + 共焦扫描,分离散射光子

  1. 超短脉冲激光照明

    • 发射 35 ps 窄脉冲激光(532 nm),逐点扫描散射介质表面(32×32 点,60×60 cm 范围),单像素曝光 60 ms,总采集时间 1 分钟。
    • 激光能量聚焦于介质表面点,经散射后形成扩散光斑(远侧光斑半高宽 2.2 cm,对应介质厚度 2.54 cm)。
  2. 单光子雪崩二极管(SPAD)+ 时间门控

    • SPAD 与激光共光路(共焦设计),仅探测同一表面点的回波光。
    • 时间门控:探测器延迟开启(如延迟 600 ps),滤除介质表面直接反射的早到光子(图 1c 虚线),仅保留经物体反射的晚到散射光子(实验中双向扩散时间≈632 ps)。
    • 时间分辨率 70 ps,配合 TCSPC 计数器,记录每个像素点的光子飞行时间(ToF)分布。
  3. 共焦扫描消除横向干扰

    • 激光与探测器同步扫描同一点,限制照明 - 探测路径为 “单点 - 扩散 - 物体 - 扩散 - 单点”,减少相邻点散射光串扰(图 1a)。

二、物理模型层:扩散方程建模散射路径

  1. 扩散方程求解(含边界条件)

    • 针对 2.54 cm 厚聚氨酯泡沫(≈6 个输运平均自由程,l∗=3.8 mm),建立双向扩散模型:ϕ(t,r0​,r1​)=2(4πDc)3/2t5/21​e−μa​ct−4Dct(r1​−r0​)2​∑镜像偶极子源
      其中D=1/[3(μa​+μs′​)]为扩散系数,μa​=5.26×10−3 cm−1,μs′​=2.62 cm−1(通过 15 种厚度样本拟合校准)。
    • 镜像法处理边界:在介质两侧外推虚拟边界(ze​),通过无限偶极子源阵列模拟界面反射(图 4 补充说明),截断 7 对镜像源即可逼近真实解。
  2. 共焦近似简化测量模型

    • 假设照明点与探测点相同(r1​≈r2​),将复杂的 “扩散 - 自由传播 - 扩散” 路径简化为卷积:τ^(t,r0​)=ϕˉ​∗I(t,r1​,r1​)
      其中ϕˉ​为双向扩散核,I含物体反射特性(BSDF、反照率)。

三、算法层:频域反演 + F-K 迁移,去除散射模糊

  1. 维纳去卷积补偿扩散模糊

    • 对每个扫描点的时间分辨数据(图 2a),通过傅里叶变换频域滤波:ρ^​=A−1F−1[∣Φ^∣2+1/αΦˉ^∗​]Fτ
      其中Φˉ^为扩散核的频域响应,α为噪声正则化参数,A为自由空间传播矩阵(含距离衰减)。
  2. F-K 迁移重建三维形状

    • 借鉴非视距成像的光锥变换(Light-Cone Transform),将时间维度映射为深度(z=ct/2),通过平面波分解(F-K 域)聚焦物体散射信号(图 2b-c)。
    • 计算复杂度O(N3logN),32×32×128 体素重建仅需 300 ms(CPU),依赖 3D FFT 加速。
  3. 噪声处理与迭代优化

    • 针对 SPAD 的泊松噪声,设计迭代反演算法(补充 Note 5-6),通过最大似然估计优化光子计数统计,提升漫反射物体(如字母 “C”)的重建质量(图 3i-l)。

四、实验验证:从数据到图像的全流程

  1. 隐藏物体重建示例

    • Retroreflective 字母 “S”:50 cm 距离,经扩散介质后,时间门控数据(图 2a)通过去卷积恢复清晰轮廓(图 2c),轴向分辨率 9 cm,横向 15 cm(与理论Δtd​=632 ps一致)。
    • 漫反射交通锥:45-78 cm 多深度目标,通过深度依赖的辐射校正(图 3m-p),重建位置误差 < 5 cm。
  2. 对比传统方法

    • 时间门控仅选早到光子:仅捕捉少量单次散射光,无法恢复复杂形状(图 3c vs d)。
    • CDT 优势:利用多次散射光子,突破弹道成像的光子效率极限(实验中漫反射物体需 10 倍曝光仍可重建)。

五、关键创新:非侵入式 + 无需先验的三维成像

  • 非侵入式:仅需单侧扫描(区别于传统 DOT 需介质两侧布探测器),适用于大气、雾等开放场景。
  • 无需目标先验:通过共焦扫描和扩散模型,自动反演物体深度(区别于需预设深度的弹道成像)。
  • 鲁棒性:对散射参数波动不敏感(μs′​±0.43 仍稳定,补充 Fig.14),支持非均匀介质扩展(未来通过辐射传输方程建模)。

总结:CDT 的 “三步曲” 处理被阻挡图像

  1. 硬件采集:共焦扫描 + 时间门控,分离介质反射与物体散射光子;
  2. 物理建模:扩散方程 + 镜像法,量化散射引起的时间展宽与空间模糊;
  3. 算法反演:频域滤波 + F-K 迁移,从时间分辨数据中 “剥离” 散射影响,重建三维图像。

该技术为自动驾驶(穿雾)、遥感(穿云)、医学(深层组织)等场景提供了无需先验、非侵入的解决方案,实测穿透 6 个输运平均自由程的介质(≈2.5 cm 泡沫),未来结合超导探测器(如 SNSPD)可进一步提升穿透深度与分辨率。



Q2:这个公式能得到什么

该公式描述的是光在具有边界条件的散射介质中传播时的时间 - 空间分布,具体分析如下:

  • 物理意义:公式中的ϕ(t,r0​,r1​)表示在时刻t、位置r1​处,由r0​处光源激发的光子密度或光强分布。它是求解扩散方程并结合镜像法处理边界条件后得到的格林函数,用于刻画光在散射介质内的传播规律。

  • 关键参数

    • D:扩散系数,反映光在介质中的扩散能力,D=3(μa​+μs′​)1​(μs′​为约化散射系数)。
    • μa​:吸收系数,描述介质对光的吸收特性。
    • c:光速,t为时间,r0x​,r0y​,r0z​与r1x​,r1y​,r1z​分别为光源和探测点的空间坐标。
  • 数学结构

    • 分母(4πDct)3/2和指数项e−μa​ct体现了光强随时间的衰减与扩散。
    • 空间相关项exp(−4Dct(r1x​−r0x​)2+(r1y​−r0y​)2​)描述了光在横向上的扩散。
    • 求和项∑l=−∞∞​[⋯]通过镜像法处理介质边界,模拟光在边界间的多次反射,确保解满足外推边界条件,准确刻画光在有限厚度介质中的传播。
  • 应用价值:该公式是共焦漫射断层扫描(CDT)等技术的理论基础,通过计算光在散射介质中的传播分布,可反演隐藏于介质后的物体形状与位置,为非侵入式三维成像提供关键支撑,适用于生物医学成像、遥感等领域中透过散射介质(如组织、雾)的探测场景。

综上,该公式能得到光在散射介质中随时间和空间的分布规律,是分析与重建散射介质后物体信息的重要工具。



Q3:该部分为什么可以简化,以及为什么要做卷积,以及做完卷积能得到什么

为什么可以简化?

共焦近似假设照明点与探测点相同(r1​≈r2​),这一假设基于实际物理场景中,当照明与探测点距离极近时,光在介质中的 “扩散 - 自由传播 - 扩散” 路径可大幅简化。这种近似忽略了两点间微小差异带来的复杂横向散射影响,将光传播模型从三维复杂路径简化为局部近似对称的传播过程,从而显著降低数学建模与计算的复杂度,使后续分析与反演更具可行性。

为什么要做卷积?

  • 物理过程的线性叠加:光传播可分为两个关键环节 —— 光在介质中的双向扩散(由双向扩散核 ϕˉ​ 描述),以及光与物体相互作用的反射特性(由 I(t,r1​,r1​) 描述,包含物体的 BSDF、反照率等)。这两个环节在时间或空间上是依次发生的线性过程,卷积操作能数学化地表示这种 “扩散后再反射” 的线性叠加关系。
  • 数学处理的便利性:卷积是一种成熟的数学工具,通过将复杂的物理过程转化为卷积形式,便于后续利用频域分析(如傅里叶变换)、去卷积算法(如维纳滤波)等技术,从测量信号中分离介质与物体的贡献,为图像重建提供清晰的数学框架。

做完卷积能得到什么?

公式 τ^(t,r0​)=ϕˉ​∗I(t,r1​,r1​) 中,τ^(t,r0​) 是最终的测量信号,它融合了介质扩散与物体反射的综合信息。通过这一模型:

  • 为反演算法提供输入:后续可通过去卷积(如维纳去卷积)等操作,从 τ^(t,r0​) 中分离出物体反射特性 I(t,r1​,r1​),进而重建物体的形状、位置等信息。
  • 统一描述复杂物理过程:将光在介质中的扩散衰减、时间展宽与物体的反射特性整合为单一信号,为非侵入式三维成像提供理论基础,例如在共焦漫射断层扫描(CDT)中,通过分析 τ^(t,r0​) 可恢复被散射介质遮挡的物体图像。

综上,共焦近似简化使模型可解,卷积操作统一描述物理过程,最终得到的测量信号 τ^(t,r0​) 是后续图像重建的关键依据,连接了物理现象与算法反演。



Q4:详细解释一下这个式子

该式子 τ^(t,r0​)=[ϕ(t,r0​,r1​)⊗ϕ(t,r0​,r1​)]⊗I(t,r1​,r1​)=ϕˉ​⊗I 是对测量信号 τ^(t,r0​) 的建模,具体解释如下:

  1. 符号定义

    • τ^(t,r0​):表示在位置 r0​ 处随时间 t 变化的测量信号,是光传播与物体反射综合作用的结果。
    • ϕ(t,r0​,r1​):描述光从位置 r0​ 传播到 r1​ 的过程,体现光在介质中的扩散特性,如衰减、时间展宽等。
    • I(t,r1​,r1​):表示物体在位置 r1​ 处的反射特性,包含反照率、双向散射分布函数(BSDF)等,刻画物体对光的反射行为。
    • ϕˉ​=ϕ(t,r0​,r1​)⊗ϕ(t,r0​,r1​):代表光的 “双向扩散核”,即光从 r0​ 出发,经介质扩散至物体,再从物体扩散回 r0​ 的完整过程(两次 ϕ 卷积)。
  2. 物理意义

    • 光传播分为两个环节:首先是光在介质中的双向扩散(由 ϕˉ​ 描述),其次是光与物体的反射相互作用(由 I(t,r1​,r1​) 描述)。
    • 卷积操作 “⊗” 表示这两个环节在物理上是依次发生的线性过程。数学上,通过卷积将介质扩散与物体反射的综合效应统一为测量信号 τ^(t,r0​),即 τ^(t,r0​) 是双向扩散过程 ϕˉ​ 与物体反射特性 I 的卷积结果。
  3. 作用

    • 该模型为后续图像重建提供了理论基础。通过去卷积等算法(如维纳去卷积),可从 τ^(t,r0​) 中分离出 I(t,r1​,r1​),进而恢复物体的形状、位置等信息,实现透过散射介质的成像。

综上,该式子通过卷积建模,将测量信号分解为介质扩散与物体反射的贡献,是共焦漫射断层扫描(CDT)等技术反演物体图像的关键理论表达式。



Q5:这个公式之怎么来的?以及“扩散核的频域响应”和“噪声正则化参数”和“自由空间传播矩阵(含距离衰减)”是什么,算出来的这个结果是什么,以及有什么用

该公式 ρ^​=A−1F−1[∣Φˉ^∣2+α1​Φˉ^∗​]Fτ 源于 维纳去卷积算法,用于从含噪声的测量信号中恢复物体的反射特性,具体分析如下:

公式推导来源

测量信号 τ 是物体反射特性与扩散核的卷积(τ=ϕˉ​∗I)。在频域中,卷积转化为乘积(F(τ)=Φˉ^⋅F(I))。维纳滤波通过最小化均方误差来设计滤波器,引入噪声正则化参数 α 平衡信号与噪声,得到频域滤波器 ∣Φˉ^∣2+α1​Φˉ^∗​,再结合自由空间传播矩阵 A 的逆矩阵补偿距离衰减,最终通过逆傅里叶变换(F−1)恢复物体函数 ρ^​。

各参数含义

  1. 扩散核的频域响应(Φˉ^)
    • 扩散核 ϕˉ​ 描述光在散射介质中的双向扩散过程(如衰减、时间展宽)。对 ϕˉ​ 进行傅里叶变换(F),得到其频域响应 Φˉ^,表征扩散过程对不同频率成分的调制特性(如高频衰减更显著)。
  2. 噪声正则化参数(α)
    • 测量信号不可避免地包含噪声(如探测器的泊松噪声)。α 用于调节噪声影响,避免去卷积时噪声被过度放大。α 越大,对噪声的抑制越强,但可能牺牲部分信号细节;反之,信号细节更清晰,但噪声抑制弱。
  3. 自由空间传播矩阵(含距离衰减,A)
    • 光在自由空间传播时,强度随距离衰减(如 1/r2 规律)。A 是包含这种距离衰减信息的矩阵(通常为对角矩阵,元素对应不同距离的衰减因子),A−1 用于补偿衰减,确保恢复的物体特性不受距离影响。

计算结果及作用

  • 结果 ρ^​:表示恢复后的 物体反射率分布 或 物体函数,是去除散射介质扩散影响、补偿距离衰减并抑制噪声后的信号,更接近物体真实的反射特性(如反照率、形状)。
  • 作用:在共焦漫射断层扫描(CDT)中,ρ^​ 是三维成像的基础。通过进一步的后处理(如 f−k 迁移),可将 ρ^​ 映射为物体的空间分布,实现透过散射介质(如生物组织、雾)的非侵入式成像,应用于生物医学、遥感、自动驾驶等领域。

综上,该公式通过维纳去卷积,结合扩散核特性、噪声抑制和距离补偿,从含噪测量信号中恢复物体真实信息,是散射介质成像技术的关键步骤。



Q6:频域滤波器是怎么得到的?对扩散核进行傅里叶变换,为什么可以得到频域响应?以及“扩散核”和“频域响应”分别是什么?以及有什么用?

一、频域滤波器的推导过程(基于维纳去卷积理论)

1. 测量模型的频域转换

论文中测量模型为 τ^=Φˉ∗I(时域卷积),其中:

  • Φˉ 是双向扩散核(描述光在散射介质中往返的扩散过程),
  • I 是物体反射特性函数(包含反照率、BSDF 等)。
    根据傅里叶变换的卷积定理,时域卷积对应频域乘积:F(τ^)=F(Φˉ)⋅F(I)=Φˉ^⋅F(I)
    其中 F 表示傅里叶变换,Φˉ^ 是扩散核的频域响应
2. 维纳滤波器的引入(含噪声模型)

实际测量信号 τ 包含噪声 n,即 τ=τ^+n。维纳滤波的目标是设计滤波器 H,使得恢复的 ρ^​=F−1(H⋅F(τ)) 与真实 I 的均方误差最小。
假设噪声为加性高斯白噪声,维纳滤波器的形式为:H=∣Φˉ^∣2+σI2​σn2​​Φˉ^∗​
其中 Φˉ^∗ 是频域响应的共轭,σn2​/σI2​ 是噪声与信号的功率谱密度比。论文中简化为 α(噪声正则化参数),最终频域滤波器为:H=∣Φˉ^∣2+α1​Φˉ^∗​
核心思想:通过频域中信号与噪声的功率比,动态调整各频率成分的恢复权重,抑制噪声放大。

二、为什么对扩散核傅里叶变换能得到频域响应?

1. 傅里叶变换的物理意义

傅里叶变换将时域信号分解为不同频率成分的叠加。对于扩散核 Φˉ(t)(描述光强随时间的扩散衰减),其傅里叶变换 Φˉ^(ω) 表示:

  • 每个频率 ω 成分在传输过程中的幅度衰减(∣Φˉ^(ω)∣)和相位延迟(∠Φˉ^(ω))。
    例如,扩散过程会使高频成分(快速变化的信号)衰减更严重(因扩散导致时间展宽,高频能量损失),低频成分衰减较小。
2. 扩散核的定义与特性
  • 扩散核 Φˉ
    是时域中的卷积核,描述光在散射介质中往返的扩散过程,包含吸收衰减(e−μa​ct)和扩散展宽(高斯型时间分布),形式为:Φˉ(t)=ϕ(t,r0​,r1​)∗ϕ(t,r0​,r1​)
    其中 ϕ(t,r0​,r1​) 是单次扩散的格林函数(论文式 2),Φˉ 表征双向扩散的总效应。

  • 频域响应 Φˉ^
    对 Φˉ(t) 进行傅里叶变换,得到每个频率成分的传输特性。例如,若 Φˉ(t) 是高斯函数,其频域响应也是高斯函数,高频衰减随扩散系数增大而加剧。

三、“扩散核” 与 “频域响应” 的定义及作用

1. 扩散核(Diffusion Kernel, Φˉ)
  • 定义:时域中描述光在散射介质中往返扩散的时间 - 空间分布函数,包含衰减和展宽效应。
  • 物理意义
    • 光从散射介质表面点 r0​ 入射,经介质扩散到物体,再扩散返回 r0​ 的全过程,表现为时间上的拖尾(脉冲展宽)和强度衰减。
    • 核心参数:扩散系数 D=1/[3(μa​+μs′​)],吸收系数 μa​,约化散射系数 μs′​(决定扩散速度和衰减程度)。
  • 作用
    • 作为卷积核,与物体反射特性 I 卷积后生成测量信号 τ^(论文式 4)。
    • 是连接物理传播过程与测量信号的关键模型,需通过实验校准(如测量不同厚度介质的时间响应,拟合 μa​ 和 μs′​)。
2. 频域响应(Frequency Response, Φˉ^)
  • 定义:扩散核 Φˉ 的傅里叶变换,表征各频率成分在散射介质中的传输效率。
  • 数学形式:Φˉ^(ω)=F{Φˉ(t)}=∫−∞∞​Φˉ(t)e−iωtdt
    其中 ω 是角频率,Φˉ^(ω) 是复数,模表示幅度衰减,相位表示时间延迟。
  • 作用
    • 频域滤波的核心依据:通过 Φˉ^ 可知哪些频率成分被介质严重衰减,从而在反演时补偿(如对高频成分赋予更高权重,恢复细节)。
    • 噪声抑制:结合 α 调整高频噪声放大问题(因高频信号易受噪声干扰,且扩散导致信噪比低,需通过 α 平衡)。

四、总结:频域滤波器的关键作用

  1. 去除扩散模糊
    通过 Φˉ^∗/∣Φˉ^∣2 补偿扩散过程对各频率成分的衰减,恢复物体真实的频率响应(如高频对应物体边缘细节,低频对应整体轮廓)。
  2. 噪声正则化
    α 抑制噪声在高频区域的放大(因噪声功率谱常为均匀分布,高频信号弱时易被噪声淹没)。
  3. 连接时域与频域
    利用傅里叶变换的高效性(FFT 算法),将复杂的时域卷积运算转化为频域点乘,大幅降低计算复杂度(论文中计算复杂度为 O(N3logN),适用于实时重建)。
一句话总结:

频域滤波器通过扩散核的频域响应,在频域中分离信号与噪声,补偿散射介质对不同频率成分的影响,从而从含噪测量信号中恢复物体的清晰图像,是 CDT 技术实现高效三维成像的核心算法模块。



Q7:这个怎么做,以及是什么意思呢

 

F - K 迁移重建三维形状是一种结合时间与空间信息的成像技术,其核心步骤与原理如下:

一、时间 - 深度映射(z=ct/2)

  • 原理:光在介质中往返传播,总时间 t 与深度 z 满足 z=ct/2(c 为光速)。通过这一关系,将时间维度的信号转换为深度维度的空间信息。例如,若某时刻 t 的信号对应光往返某深度 z,则可将该时刻的测量值赋予深度 z,实现时间域到空间深度域的映射。

二、光锥变换(Light - Cone Transform)的借鉴

  • 作用:非视距成像中,光锥变换用于处理间接反射光的传播路径。在此技术中,它将每个扫描点的时间分辨信号(经 z=ct/2 映射后)组织成三维数据体(x,y,z),其中 x,y 为扫描平面坐标,z 为深度。每个点的信号沿深度方向展开,形成类似 “光锥” 的传播路径表示,为后续聚焦处理奠定基础。

三、平面波分解(F - K 域)与聚焦

  • F - K 域分析:将三维数据体从时空域(x,y,z)转换到频率 - 波数域(F - K 域)。平面波分解将信号分解为不同频率 f 和波数 k 的平面波成分。物体的散射信号在 F - K 域具有特定的频谱特征(如特定的频率 - 波数关系)。
  • 聚焦处理:通过滤波或变换操作,增强符合物体散射特征的信号成分,抑制噪声和无关散射。例如,同一物体的散射信号在 F - K 域会聚集在特定区域,通过提取该区域信号并逆变换回时空域,可实现散射信号的聚焦,重建出物体的三维形状(如图 2b - c 所示,从模糊的时间信号到清晰的三维物体轮廓)。

总结

F - K 迁移重建三维形状通过 z=ct/2 将时间映射为深度,利用光锥变换组织数据,再通过 F - K 域的平面波分解与聚焦,从散射信号中提取物体的空间分布,最终实现三维成像。这一过程有效整合了时间分辨测量与空间信息,突破散射介质对成像的限制,适用于隐藏物体的三维恢复。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值