
Prophet
文章平均质量分 85
现实、狠残酷
数据分析,供应链计划。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Prophet代码实战(三)外部变量调节
通过使用辅助的方法 Prophet.make_future_dataframe 来将未来的日期扩展指定的天数,得到一个合规的数据框。】介绍了Prophet算法的趋势项和季节项。接下来我们开始介绍Prophet算法的外部变量。Prophet 的输入必须包含两列的数据框:ds 和 y。原创 2022-10-11 11:06:46 · 1817 阅读 · 0 评论 -
Prophet代码实战(二)季节项调节
Prophet 的输入必须包含两列的数据框:ds 和 y 。example_wp_log_peyton_manning.csv下载地址:建模流程通过使用辅助的方法 Prophet.make_future_dataframe 来将未来的日期扩展指定的天数,得到一个合规的数据框。如果想查看预测的成分分析,可以使用 Prophet.plot_components 方法。默认情况下,将展示趋势、时间序列的年度季节性和周季节性。如果之前包含了节假日,也会展示出来。在上一篇文章【Prophet代码实战(一)趋势原创 2022-10-10 18:01:27 · 1079 阅读 · 0 评论 -
Prophet代码实战(一)趋势项调节
中介绍了Prophet算法是一个加(乘)法模型,可分解为趋势项、季节项、外部变量(节假日)、误差项(随机项)。接下来我们一一介绍如何设置或者调节Prophet这些分解的成分。通过使用辅助的方法 Prophet.make_future_dataframe 来将未来的日期扩展指定的天数,得到一个合规的数据框。必须在训练集和测试集的data_frame中提供"cap",即趋势的上限。Prophet 的输入必须包含两列的数据框:ds 和 y。在有需要的情况下好可以提供"floor",即趋势的下限。原创 2022-10-10 16:01:06 · 2258 阅读 · 0 评论 -
Prophet算法
Prophet是FaceBook公司在2017年开源的一款时间序列建模工具。Prophet的方法是将时间序列看成是关于t的一个函数,用你和函数曲线的方法进行预测,所以这和传统的时间序列模型有本质上的区别,他更倾向于机器学习的建模方式。Prophet并不是适用于所有的时间序列问题,由于他的建模假设和过程,Prophet方法具有一定的适用范围,他适用于如下的时间序列:商业时间序列(business time series)存在趋势变化有很强的季节性,可是多季节的有线性的外部效应(如假期)原创 2022-10-09 10:40:38 · 3778 阅读 · 0 评论