【一】 定义(连续型)
f
(
x
)
=
1
2
π
σ
⋅
e
(
x
−
μ
)
2
2
σ
2
s
.
t
−
∞
<
x
<
+
∞
f ( x ) = \bm \red {\frac { 1 } { \sqrt { 2 \pi \sigma } } \cdot e ^ { \frac { ( x - \mu ) ^ { 2 } } { 2 \sigma ^ { 2 } } }} \;\;\;\; s.t \;\;- \infty < x < + \infty
f(x)=2πσ1⋅e2σ2(x−μ)2s.t−∞<x<+∞
- 表达方式
X ∼ N ( μ , σ 2 ) s . t μ 为 均 值 , σ 2 为 方 差 \bm \red {X \sim N ( \mu , \sigma ^ { 2 } )} \;\;\;\;s.t \;\;\; \mu \; 为均值,\sigma ^ { 2 } \; 为方差 X∼N(μ,σ2)s.tμ为均值,σ2为方差
P ( a < x < b ) = ϕ ( b − μ σ ) − ϕ ( a − μ σ ) = P ( a − μ σ < x − μ σ < b − μ σ ) s . t ϕ ( x − μ σ ) 称 为 标 准 化 , 可 以 使 用 标 准 正 态 分 布 \bm {P ( a < x < b )} = \phi \,( \frac { b - \mu } { \sigma } ) - \phi \, ( \frac { a - \mu } { \sigma } ) = P( \frac { a - \mu } { \sigma } < \frac { x - \mu } { \sigma } < \frac { b - \mu } { \sigma }) \;\;\;\; s.t \;\; \bm {\phi \,( \frac { x - \mu } { \sigma } )} \;\; 称为标准化,可以使用标准正态分布 P(a<x<b)=ϕ(σb−μ)−ϕ(σa−μ)=P(σa−μ<σx−μ<σb−μ)s.tϕ(σx−μ)称为标准化,可以使用标准正态分布
- 图示(当固定 μ \mu μ 时, σ 2 \sigma ^ { 2 } σ2 越大,曲线的峰越低)


【二】 标准正态(高斯)分布
X
∼
N
(
0
,
1
)
s
.
t
0
为
均
值
,
1
为
方
差
ϕ
(
x
)
=
1
2
π
e
−
x
2
2
\bm \red {X \sim N ( 0 , 1 )} \;\;\;\;s.t \;\;\; 0 \; 为均值,1 \; 为方差 \;\;\;\;\;\;\;\; \bm {\phi ( x )} = \bm \red {\frac { 1 } { \sqrt { 2 \pi } } e ^ { - \frac { x ^ { 2 } } { 2 } }}
X∼N(0,1)s.t0为均值,1为方差ϕ(x)=2π1e−2x2
【三】 经典题目(必做)
- 【题目 1】 设某地区男子身高
X
(
c
m
)
∼
N
(
169.7
,
4.
1
2
)
X(cm)\sim N(169.7,\,4.1^2)
X(cm)∼N(169.7,4.12):(1)从该地区随机找一名男子侧身高,求他的身高大于 175cm 的概率;(2)若从中随机找 5 个男子侧身高,至少有一名身高大于 175cm 的概率是多少?恰有一人身高大于 175cm 的概率是多少?
( 1 ) P ( X > 175 ) = 1 − P ( X ≤ 175 ) = 1 − P ( x − 169.7 4.1 ≤ 175 − 169.7 4.1 ) = 1 − ϕ ( 175 − 169.7 4.1 ) = 1 − ϕ ( 1.293 ) (1)P ( X > 175) = 1-P(X \leq 175) = 1-P(\frac { x - 169.7 } { 4.1 } \leq \frac { 175 - 169.7 } { 4.1 }) = 1-\phi(\frac{175-169.7}{4.1}) = 1-\phi(1.293) (1)P(X>175)=1−P(X≤175)=1−P(4.1x−169.7≤4.1175−169.7)=1−ϕ(4.1175−169.7)=1−ϕ(1.293)
( 2 ) 设 Y 为 5 人 身 高 大 于 175 的 人 数 , 则 Y ∼ b ( 5 , p ) 上 一 题 中 求 出 的 p = 0.0985 (2)设 \,Y为 \,5\,人身高大于 \,175\, 的人数,则 \,Y \sim b(5,\,p) \;\; 上一题中求出的\;p = 0.0985 (2)设Y为5人身高大于175的人数,则Y∼b(5,p)上一题中求出的p=0.0985
P ( Y ≥ 1 ) = 1 − P ( Y = 0 ) = 1 − ( 1 − p ) 5 = 0 , 4045 P(Y \geq 1) = 1- P(Y=0) = 1-(1-p)^5 = 0,4045 P(Y≥1)=1−P(Y=0)=1−(1−p)5=0,4045
P ( Y = 1 ) = C 5 1 p 1 ( 1 − p ) 4 = 0.3253 P(Y= 1) = C _ { 5 } ^ { 1 } \;p^1\, ( 1 - p ) ^ { 4 } = 0.3253 P(Y=1)=C51p1(1−p)4=0.3253