【MATH】_06_正态 (高斯) 分布

本文深入解析了正态分布的定义与特性,包括连续型正态分布的数学表达式和标准正态分布的特性。并通过经典案例,如男子身高的统计分析,展示了如何运用正态分布解决实际问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


 


 

【一】 定义(连续型)

 
f ( x ) = 1 2 π σ ⋅ e ( x − μ ) 2 2 σ 2          s . t      − ∞ < x < + ∞ f ( x ) = \bm \red {\frac { 1 } { \sqrt { 2 \pi \sigma } } \cdot e ^ { \frac { ( x - \mu ) ^ { 2 } } { 2 \sigma ^ { 2 } } }} \;\;\;\; s.t \;\;- \infty < x < + \infty f(x)=2πσ 1e2σ2(xμ)2s.t<x<+

 

  • 表达方式
     
    X ∼ N ( μ , σ 2 )          s . t        μ    为 均 值 , σ 2    为 方 差 \bm \red {X \sim N ( \mu , \sigma ^ { 2 } )} \;\;\;\;s.t \;\;\; \mu \; 为均值,\sigma ^ { 2 } \; 为方差 XN(μ,σ2)s.tμσ2
    P ( a < x < b ) = ϕ   ( b − μ σ ) − ϕ   ( a − μ σ ) = P ( a − μ σ < x − μ σ < b − μ σ )          s . t      ϕ   ( x − μ σ )      称 为 标 准 化 , 可 以 使 用 标 准 正 态 分 布 \bm {P ( a < x < b )} = \phi \,( \frac { b - \mu } { \sigma } ) - \phi \, ( \frac { a - \mu } { \sigma } ) = P( \frac { a - \mu } { \sigma } < \frac { x - \mu } { \sigma } < \frac { b - \mu } { \sigma }) \;\;\;\; s.t \;\; \bm {\phi \,( \frac { x - \mu } { \sigma } )} \;\; 称为标准化,可以使用标准正态分布 P(a<x<b)=ϕ(σbμ)ϕ(σaμ)=P(σaμ<σxμ<σbμ)s.tϕ(σxμ)使

 

  • 图示(当固定 μ \mu μ 时, σ 2 \sigma ^ { 2 } σ2 越大,曲线的峰越低)

 


 

【二】 标准正态(高斯)分布

 
X ∼ N ( 0 , 1 )          s . t        0    为 均 值 , 1    为 方 差                  ϕ ( x ) = 1 2 π e − x 2 2 \bm \red {X \sim N ( 0 , 1 )} \;\;\;\;s.t \;\;\; 0 \; 为均值,1 \; 为方差 \;\;\;\;\;\;\;\; \bm {\phi ( x )} = \bm \red {\frac { 1 } { \sqrt { 2 \pi } } e ^ { - \frac { x ^ { 2 } } { 2 } }} XN(0,1)s.t01ϕ(x)=2π 1e2x2

 


 

【三】 经典题目(必做)

 

  • 【题目 1】 设某地区男子身高 X ( c m ) ∼ N ( 169.7 ,   4. 1 2 ) X(cm)\sim N(169.7,\,4.1^2) X(cm)N(169.7,4.12):(1)从该地区随机找一名男子侧身高,求他的身高大于 175cm 的概率;(2)若从中随机找 5 个男子侧身高,至少有一名身高大于 175cm 的概率是多少?恰有一人身高大于 175cm 的概率是多少?
     
    ( 1 ) P ( X > 175 ) = 1 − P ( X ≤ 175 ) = 1 − P ( x − 169.7 4.1 ≤ 175 − 169.7 4.1 ) = 1 − ϕ ( 175 − 169.7 4.1 ) = 1 − ϕ ( 1.293 ) (1)P ( X > 175) = 1-P(X \leq 175) = 1-P(\frac { x - 169.7 } { 4.1 } \leq \frac { 175 - 169.7 } { 4.1 }) = 1-\phi(\frac{175-169.7}{4.1}) = 1-\phi(1.293) 1P(X>175)=1P(X175)=1P(4.1x169.74.1175169.7)=1ϕ(4.1175169.7)=1ϕ(1.293)
    ( 2 ) 设   Y 为   5   人 身 高 大 于   175   的 人 数 , 则   Y ∼ b ( 5 ,   p )      上 一 题 中 求 出 的    p = 0.0985 (2)设 \,Y为 \,5\,人身高大于 \,175\, 的人数,则 \,Y \sim b(5,\,p) \;\; 上一题中求出的\;p = 0.0985 2Y5175Yb(5,p)p=0.0985

P ( Y ≥ 1 ) = 1 − P ( Y = 0 ) = 1 − ( 1 − p ) 5 = 0 , 4045 P(Y \geq 1) = 1- P(Y=0) = 1-(1-p)^5 = 0,4045 P(Y1)=1P(Y=0)=1(1p)5=0,4045

P ( Y = 1 ) = C 5 1    p 1   ( 1 − p ) 4 = 0.3253 P(Y= 1) = C _ { 5 } ^ { 1 } \;p^1\, ( 1 - p ) ^ { 4 } = 0.3253 P(Y=1)=C51p1(1p)4=0.3253

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值