- 博客(52)
- 收藏
- 关注
原创 遥感影像图像分割-地物提取模型训练与大图直接推理流程
针对遥感影像地物要素提取中显存不足和推理效率低的问题,本文提出了一套完整的解决方案。首先通过矢量标注和栅格转换生成训练样本,并采用滑窗裁剪处理大尺寸影像。模型训练阶段选用视觉语义分割算法(如Unet、DeepLab等)。推理时创新性地采用动态裁剪法,通过实时读取影像局部数据并直接写入结果空影像,避免中间数据落盘,显著提升效率。最后对预测结果进行栅格转矢量等后处理,满足行业需求。该方法解决了遥感大图直接训练的难题,优化了推理流程,为同类任务提供了实用参考。
2025-07-10 16:39:44
913
原创 遥感影像图像分割-精度评估
遥感影像地物提取模型的精度评估可借助图像分割评价指标实现,主要包括OA、Kappa、IoU、Precision、Recall和F1等指标。这些指标通过计算混淆矩阵得出:首先统计真实标签与预测标签的对应关系构建混淆矩阵,然后根据各指标公式进行计算。核心代码展示了如何利用混淆矩阵计算总体精度(OA)、精确率、召回率、F1分数和交并比(IoU)等指标。这些量化结果能客观评估模型性能,为后续影像预测提供质量参考依据。实现过程主要涉及混淆矩阵构建和各指标的数学公式应用。
2025-07-09 11:22:32
557
原创 遥感影像图像分割算法模型库:让研究与开发效率提升300%
本文介绍了一个全能型图像分割算法模型库,旨在解决传统方法中的三大痛点:代码质量不稳定、学习成本高、效率低下。该模型库集成FPN、PSPNet、Unet、DeepLabV3等主流算法,提供统一接口设计,支持从训练到预测的一站式解决方案。通过模块化设计和工业级代码质量,用户仅需一行代码即可切换不同模型,大幅降低开发门槛。示例展示了模型创建和预测流程,框架结构清晰,便于二次开发。该工具适用于图像分割领域的学习研究和项目开发,显著提升效率。
2025-07-09 11:19:07
607
原创 遥感影像数据处理-栅格裁剪矢量
本文探讨了如何利用栅格有效区域裁剪矢量数据的解决方案。通过将栅格有效数据区域转换为多边形几何体,实现与矢量数据的空间裁剪。核心步骤包括:选取与栅格边界相交的矢量要素,进行几何相交运算,并过滤空几何对象。文中提供了Python代码示例及可视化效果图,展现了栅格边界裁剪矢量数据的完整流程。该方法适用于需要依据栅格数据范围精确裁剪矢量数据的应用场景,如地理信息系统分析和遥感数据处理。
2025-07-08 08:24:31
290
原创 遥感影像数据处理-矢量裁剪矢量
本文介绍了如何使用公开的大范围矢量数据(如全国边界或OpenStreetMap道路数据)进行区域裁剪的方法。通过读取目标区域边界矢量文件和待裁剪数据,利用geopandas的overlay函数实现"difference"操作,可以提取出指定小区域(如市县范围)的矢量图斑。文中提供了核心代码示例和可视化效果图,展示了从大范围数据中精准裁剪出局部区域的过程。该方法适用于需要处理海量公开地理数据但只需局部信息的应用场景。
2025-07-08 08:22:45
469
原创 遥感影像数据处理-栅格裁剪栅格
本文介绍了栅格有效区域直接裁剪的实现方法。首先通过提取栅格有效数据区域的边界多边形,然后使用该多边形作为掩膜裁剪目标栅格。核心代码采用Python的mask函数,参数包括源数据、掩膜多边形、裁剪标志、空值设置等。文末提供了示例图片展示裁剪前(带栅格图斑的影像)和裁剪后(仅保留有效区域)的效果对比,并提示读者可通过博主简介获取完整代码、运行指导或同类任务咨询。该方法实现了栅格数据的高效精准裁剪,适用于地理信息处理等场景。
2025-07-07 08:25:32
216
原创 遥感影像数据处理-矢量裁剪栅格
遥感影像局部裁剪方法:针对大范围遥感影像中只需提取局部区域的需求,提出了一种基于矢量边界的裁剪方法。该方法利用GDAL库的Warp函数,通过输入影像和矢量边界文件,实现精准的局部裁剪。核心代码仅需5行,主要参数包括输出路径、输入影像、矢量边界路径及裁剪模式。该方法操作简便,能有效减少数据处理量,提高工作效率。如图例所示,该方法可准确提取目标区域影像,去除无关区域,适用于县、村镇等小范围要素提取场景。
2025-07-07 08:22:39
367
原创 遥感影像数据处理-栅格影像边界提取
遥感影像变化检测中,边界提取是确保多时相影像对齐的关键步骤。传统方法通过影像四角坐标生成矢量面,但会包含无效数据区域(NaN值)。本文提出使用rasterio的read_masks函数识别有效数据区(非NaN值标记为255),结合shapes函数生成精确的多边形边界(如图示)。该方法避免了无效区域的干扰,能准确提取实际影像覆盖范围,为后续变化检测提供可靠数据基础。
2025-07-06 16:38:02
313
原创 遥感影像数据处理-栅格影像波段合并
遥感影像通常以单波段文件存储,但在解译任务中需要将多波段合并为一个文件(如RGB真彩色)。解决方案是依次读取各波段数据,并按指定顺序写入同一文件。通过Python的rasterio库实现,核心代码为:dst.write(data, i)。合并后影像效果明显改善,单波段灰度图变为彩色合成图像。该技术可广泛应用于遥感数据处理与分析领域。如需代码详情或技术交流,可通过文末联系方式获取。
2025-07-06 16:35:47
320
原创 遥感影像数据处理-栅格影像波段提取
本文提出了一种通过波段拆分优化多波段遥感数据处理效率的方法。针对仅需部分波段的应用场景,该方法可以显著减少磁盘和内存占用。核心实现是通过Python代码读取原始多波段影像,提取指定波段并写入新文件。该技术适用于需要对特定波段进行单独处理的遥感数据分析任务。
2025-07-05 17:13:57
187
原创 遥感影像数据处理-矢量文件添加地理信息
矢量文件添加坐标信息比栅格影像更简单,只需为其指定坐标系即可。解决方案包括:若无坐标系信息则添加新坐标系;若需强制覆盖则更新现有坐标系;否则保留原有坐标系。核心代码通过判断条件实现这三种操作。最终效果可直观展示修改后的坐标系信息。该功能适用于各类矢量数据处理需求,相关代码和技术支持可通过博主主页获取。
2025-07-05 17:11:07
213
原创 遥感影像数据处理-栅格文件添加地理信息
本文提出了一种为遥感影像解译结果添加地理坐标信息的方法。由于模型输出的小图缺乏坐标信息,解决方案是先拼接小图为大图,然后读取原始影像的元数据(包括地理坐标),并将这些信息写入拼接后的大图。核心代码使用rio.open读取投影文件信息,更新配置文件后写入目标文件。示例展示了如何为无坐标信息的截图添加与原遥感影像相同的地理信息,使解译结果能与原始影像精确对应。该方法解决了模型输出无坐标信息的关键问题。
2025-07-04 08:15:21
200
原创 遥感影像数据处理-矢量格式相互转换
本文介绍了遥感数据处理中不同矢量文件格式转换的需求与方法。矢量文件(如shp、geojson、kml等)存储着图斑、点和线等空间数据及其属性信息,由于不同软件支持格式不同,需要进行格式转换。文章提出使用Python的GDAL库实现格式转换,核心代码通过判断目标文件后缀调用相应转换函数(to_shp/to_kml/to_json)。该方法简单高效,文末展示了转换效果图,并提供了代码获取和技术交流方式。
2025-07-04 08:12:30
236
原创 遥感影像数据处理-图片格式相互转换
针对开源代码仅支持特定图片格式(如jpg/png)的问题,提出一种无需修改代码即可兼容其他格式(如tif)的解决方案。通过Python脚本批量读取原始图片并重新保存为目标格式,避免直接修改后缀导致的文件损坏。核心代码使用io.imread读取图片,io.imsave转换格式,操作简单高效。该方法适用于快速测试不同格式数据集,无需深入理解源码逻辑。附代码示例及效果图,并提供完整代码获取和技术支持渠道。 (字数:150)
2025-07-03 08:40:31
372
原创 遥感影像数据处理-标签类别修改
针对多分类数据集中仅需提取特定类别(如耕地)的需求,提出一种标签图像处理方法。该方法保留原始数据图像,仅对标签文件进行修改,通过重映射像素值将目标类别(耕地)设为1、其他类别设为0。核心代码采用字典映射实现类别替换,处理后标签图像仅保留目标类别信息。文中展示了处理前后的对比效果图,证明了该方法的有效性。该方法适用于从复杂分类数据中快速提取单一类别数据的需求。
2025-07-03 08:39:01
391
原创 遥感影像数据处理-添加颜色表
图像分割中标签像素值过小导致显示全黑的问题,可通过添加颜色表解决。该方法不改变原始像素值(如1、2、3等),但通过颜色映射实现可视化区分不同类别。代码示例使用rasterio库为标签文件写入颜色表,生成彩色可视化效果,便于直观检查标签与影像的对应关系。对比图显示:原标签全黑(左),添加颜色表后类别清晰可辨(右)。该方法既保留训练可用的小像素值,又解决了可视化问题。
2025-07-02 09:58:05
332
原创 遥感影像数据处理-栅格转矢量
本文介绍了将遥感影像分割模型输出的栅格图斑转换为面矢量的方法。通过提取特定类别值的栅格图斑轮廓边界,将其转换为面矢量并写入矢量文件。核心代码展示了多边形化处理过程,包括几何特征提取和属性记录。最终效果图对比显示,转换后的矢量图斑能更清晰地展示类别边界及其在原始影像上的分布情况。该方法为遥感图像分割结果的后处理提供了实用解决方案。
2025-07-02 09:56:30
582
原创 遥感影像数据处理-矢量转栅格
摘要:本文探讨了遥感影像语义分割标注的两种方法,重点介绍了专业矢量标注转栅格的自动化处理方案。针对传统人工处理效率低的问题,提出使用Python代码批量转换矢量图斑为栅格标签的技术路线,通过读取矢量文件、遍历图斑类别、结合原始影像地理信息生成栅格标签文件。该方法可显著提升大规模数据处理效率,并保持标注结果与原始影像的空间一致性。文末展示了矢量图斑与转换后栅格标签的叠加效果对比,并提供完整代码获取和技术交流渠道。
2025-07-01 09:54:11
262
原创 遥感影像数据处理-影像位深转换
本文针对遥感影像位深转换问题提出一种优化方法。由于视觉算法模型通常使用uint8图像,而遥感影像存在多种位深,直接使用现有转换函数可能导致图像质量下降。作者采用基于百分位数的截断缩放策略:计算影像指定百分位值作为上下限,对超出范围的像素进行截断,再线性映射到0-255区间。实验结果表明,该方法有效避免了传统转换导致的图像过暗/过亮问题,保持了影像清晰度。核心代码展示了基于nanpercentile的截断处理和归一化过程,并提供了转换前后的对比效果图。
2025-07-01 09:49:44
618
原创 遥感影像数据处理-小图拼接为大图
本文介绍了如何将滑窗裁剪的小图拼接回原始大图的方法。通过解析小图文件名中包含的坐标信息(文件名末尾两个数字分别表示左上角在大图中的x、y坐标),利用Python的rasterio库实现精准定位拼接。核心代码展示了如何读取小图坐标及尺寸信息,并将像素数据写入大图对应位置的过程。拼接效果通过对比图直观展示。该方法适用于遥感影像等大文件处理,实现了分块处理后的完整重建。
2025-06-30 15:04:21
213
原创 遥感影像数据处理-大图滑窗切分为小图
本文针对遥感影像分割模型训练中的大尺寸图像处理问题,提出了一种灵活的裁剪解决方案。由于原始遥感影像通常尺寸过大(达数万像素),直接输入模型会导致内存不足,因此需要将影像分割为256x256至1024x1024等标准尺寸的小图。文中设计了一套可调节参数的裁剪算法,支持自定义小图尺寸、滑动步长、外扩填充大小等参数,并处理边缘不足尺寸的情况,同时保留地理坐标信息。代码实现了从左到右、从上到下的顺序裁剪,确保训练数据的高效生成。该方案已通过功能验证,可满足多种遥感影像处理需求。
2025-06-30 14:53:45
333
原创 遥感影像-语义分割数据集:光伏数据集详细介绍及训练样本处理流程
数据集包括504张亚米级卫星图片的农业光伏数据集,该数据集用于亚米级影像中的农业光伏提取任务。
2025-05-21 15:08:48
301
原创 遥感影像-语义分割数据集:农业大棚数据集详细介绍及训练样本处理流程
数据集包括1510张亚米级卫星图片的农业大棚数据集,该数据集用于亚米级影像中的农业大棚提取任务
2025-03-28 10:45:16
402
原创 遥感影像-语义分割数据集:多源多模态地物多要素数据集详细介绍及训练样本处理流程
数据集包含100张5556*3704像素的光学图像和同一地区的SAR图像,覆盖了中国湖北省(北纬30°N-33°,东经108°E-117°)约50000公里的区域。该地区属亚热带季风气候,最低海拔50米,最高海拔3000米。WHU-OPT-SAR覆盖了山脉、林地、丘陵、平原等不同地形和针叶林、阔叶林、灌木和水生植被等不同植被的广泛遥感图像,该数据集中带有像素级注释的图像可以为基于深度学习的土地利用分类提供数据源
2024-10-09 09:00:00
1783
原创 遥感影像-语义分割数据集:sar水体数据集详细介绍及训练样本处理流程
该数据集由WHU-OPT-SAR数据集整理而来,覆盖面积51448.56公里,分辨率为5米。据我们所知,WHU-OPT-SAR是第一个也是最大的土地利用分类数据集,它融合了高分辨率光学和SAR图像,并进行了充分的标注
2024-10-08 08:43:10
2255
原创 遥感影像-语义分割数据集:云及云阴影数据集详细介绍及训练样本处理流程
数据集包括108个GF-1宽幅(WFV)的云和云阴影掩码,该数据集用于GF-1 WFV图像中的云和云阴影检测。
2024-10-05 09:00:00
847
1
原创 遥感影像-语义分割数据集:高分卫星-云数据集详细介绍及训练样本处理流程
该云数据集包括RGB三通道的高分辨率图像,包含高分一、高分二及宽幅数据集。
2024-10-04 09:00:00
797
2
原创 遥感影像-语义分割数据集:Landsat8云数据集详细介绍及训练样本处理流程
该云数据集包括RGB三通道的高分辨率图像,在全球不同区域的分辨率15米。这些图像采集自Lansat8的五种主要土地覆盖类型,即水、植被、湿地、城市、冰雪和贫瘠土地。
2024-10-03 09:00:00
1092
原创 遥感影像-语义分割数据集:云数据集详细介绍及训练样本处理流程
该云数据集包括150张RGB三通道的高分辨率图像,在全球不同区域的分辨率从0.5米到15米不等。这些图像采集自谷歌Earth的五种主要土地覆盖类型,即水、植被、湿地、城市、冰雪和贫瘠土地。
2024-10-02 09:00:00
525
原创 遥感影像-语义分割数据集:耕地地块数据集详细介绍及训练样本处理流程
该耕地地块数据集为吉林一号高分辨率卫星遥感影像,影像为四通道数据(B,G,R,NIR),分辨率为0.75~1.1米之间,训练集16张,测试集15张,行数与列数≥5000。
2024-10-01 09:00:00
1622
原创 遥感影像-实例分割数据集:iSAID 从切图到YOLO格式数据集制作详细介绍
开源数据集isaid标注包含实例分割,但是原始影像太大,很吃显存,一般显卡无法用原始影像直接训练,所以需要对影像进行裁剪,并生成对应的标签,因为想用yolo系列跑模型,所以将标签需要转为txt格式。
2024-09-30 14:16:32
2463
2
原创 遥感影像-语义分割数据集:山体滑坡数据集详细介绍及训练样本处理流程
该遥感滑坡数据集由卫星光学图像、滑坡边界的形状文件和数字高程模型组成。该数据集中的所有图像,即770张滑坡图像(红点)和2003张非滑坡图像,都是从2018年5月至8月拍摄的TripleSat卫星图像中截取的,影像分辨率0.8米。对于滑坡实例,我们提供了滑坡图像、滑坡掩码文件和相应的DEM数据。
2024-09-27 09:00:00
1578
原创 遥感影像-语义分割数据集:典型地物要素数据集详细介绍及训练样本处理流程
2015年某地区的高分辨率遥感影像,包括基于该遥感影像目视解译出来的地表覆盖样本数据。中国南方某地区的高分辨率遥感影像。 影像的空间分辨率为亚米级,光谱为可见光波段(R,G,B),已去除坐标信息
2024-09-26 09:00:00
885
原创 遥感影像-语义分割数据集:地物多分类数据集详细介绍及训练样本处理流程
数据为覆盖0.8m-2m分辨率的高分系列遥感多光谱影像,成像波段包括R、G、B、Nir波段,数据覆盖地貌包括:山地、丘陵地区、河湖(水库)、平原、城镇等。
2024-09-25 09:30:38
1542
1
原创 遥感影像-语义分割数据集:DeepGlobe-Land-cover数据集详细介绍及训练样本处理流程
提供高分辨率亚米卫星图像,重点是农村地区。由于土地覆盖类型的多样性和注释的高密度,该数据集很具挑战性。该数据集共包含1146幅卫星图像,大小为2448×2448像素,分为训练/验证/测试集,每组图像为803/171/172幅(对应70%/15%/15%)。
2024-09-20 09:41:46
1077
原创 遥感影像-语义分割数据集:2022年山东土地集团杯数据集详细介绍及训练样本处理流程
遥感数据为GF1-WFV拍摄的山东滨州附近地区的影像,预处理过程为正射校正、配准、裁剪。分类目标是山东省土地利用类型,经过处理合并得到以下六类:耕地、林地、草地、水域、城乡、工矿、居民用地及未利用土地。
2024-09-19 14:06:51
707
原创 遥感影像-语义分割数据集:GID数据集24类超精细土地覆盖数据集
GID 是基于我国Gaofen-2卫星数据而构建的大规模高分辨率遥感图像土地覆盖数据集。它包含150张高分辨率高分二号卫星图像的50多亿个标记像素,在一个涵盖人工建造、农业和自然类别的24类系统中进行了标注
2024-09-09 10:40:22
2285
2
原创 遥感影像-语义分割数据集:GID数据集15类样本数据量完美补充
GID数据集,根据官方提供的数据集可以知道,5类别数据还是挺多的,大图150张都有标注类别,但是15类别的样本数据就只有10张标注了类别,这样裁剪成小图512x512大小的可能就只有2100张,这对于模型训练是完全不够的,
2024-09-09 10:39:15
1372
1
原创 遥感影像-语义分割数据集:2021年昇腾杯复赛数据集详细介绍及训练样本处理流程
细粒度语义分割赛道依据现有的遥感地物分类要求, 结合现有的地物分类实际需求,参照地理国情监测、 “三调”等既有地物分类标准,依据遥感地物“所见即所得”原则, 设计地物要素分类体系,共涉及二级子类(47类),数据为0.8米-2米分辨率的遥感图像。
2024-09-04 15:09:47
895
原创 遥感影像-语义分割数据集:2021年昇腾杯初赛数据集详细介绍及训练样本处理流程
细粒度语义分割赛道依据现有的遥感地物分类要求, 结合现有的地物分类实际需求,参照地理国情监测、 “三调”等既有地物分类标准,依据遥感地物“所见即所得”原则, 设计地物要素分类体系,共涉及一级大类8种,数据为0.8米-2米分辨率的遥感图像。
2024-09-04 15:08:03
864
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人