
ReID
藏晖
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
详解ReID的各部分组成及Trick——基于FastReID
这一系列博客将基于京东开源的FastReID进行扩充,详细介绍了ReID的各个组成部分,一些有用的Trick,评价指标,常用数据集等,详细内容见下方的链接,总结不易,如有理解不正确之处,麻烦各位批评指正。一、FastReID的中的baseline文件配置二、Training strategy三、Pre-processing四、Backbone五、Aggregation六、Head七、Loss八、Distance Metric九、Post-processing十、Evaluation十一原创 2020-09-11 09:20:24 · 8541 阅读 · 1 评论 -
详解ReID的各部分组成及Trick——数据集
ReID任务中常见的数据集有以下四个:Market-1501、DukeMTMC-reID、CUHK03、MSMT171、Market-1501 Market-1501 数据集在清华大学校园中采集,夏天拍摄,在 2015 年构建并公开。它包括由6个摄像头(其中5个高清摄像头和1个低清摄像头)拍摄到的 1501 个行人、32668 个检测到原创 2020-09-11 09:19:45 · 2904 阅读 · 0 评论 -
详解ReID的各部分组成及Trick——评价指标(Evaluation)
1、Rank1(CMC,Cumulative Matching Characteristics) Rank1是我们在阅读ReID相关论文中最常见的两个指标之一,它的计算如下: 1)首先定义一个指示函数表示 q,i 两张图片是否具有相同标签: 2)那么计算ra原创 2020-09-10 14:15:29 · 6271 阅读 · 3 评论 -
详解ReID的各部分组成及Trick——后处理(Post-processing)
ReID任务中存在的后处理方法的目的是为了获得更优的匹配结果和更优的匹配排序,在一般的ReID任务中,会通过欧式/余弦距离来计算度量矩阵,并利用k-近邻的思想,从gallery中选择与probe最相似的前k个,但是这种方法很有可能有false match的噪音数据参杂进这个ranking list中,如下图:为此需要使用些后处理方法。1、K-reciprocal(Re-rank)原创 2020-09-10 14:05:28 · 3604 阅读 · 0 评论 -
详解ReID的各部分组成及Trick——距离度量(Distance Metric)
距离度量方法是ReID任务在测试阶段来评价特征与特征之间的距离构建度量矩阵所需的,对于一个ReID任务来说,选用一个好的度量方式,而且和训练的损失可以相互统一,可以为ReID提供很好的性能。1、Eucildean 欧几里得度量(euclidean metric)(也称欧氏距离)是一个通常采用的距离定义,指在m维空间中两个点之间的真实距离,原创 2020-09-10 13:55:18 · 4404 阅读 · 0 评论 -
详解ReID的各部分组成及Trick——损失函数(Loss)
ReID任务在大多数情况下都是多任务学习,主流是分为两个任务,一个是构建id loss,通过分类损失,来学习对应不同id的损失,另一种是triple loss为主的通过特征向量直接构建的损失,学习类内的相似性和类内的区分性,让不同的特征向量直接的区分度更高,让相同的特征向量更加趋同。1、Cross-entropy loss 交叉熵是常见的原创 2020-09-10 13:48:54 · 7618 阅读 · 1 评论 -
详解ReID的各部分组成及Trick——Head
Head指的是ReID任务中将前面模块获得的特征向量做一定变化,来获得可以用于构建损失函数最后完成学习。1、Linear Linear是ReID中最常见的Head之一,其构成非常简单,仅仅由一层或者多层全连接层构成。全连接层的目标是把特征向量变化为可以构建ID loss(常见的有交叉熵)的one hot编码。2、Bnneck&nb原创 2020-09-10 11:28:57 · 4200 阅读 · 0 评论 -
详解ReID的各部分组成及Trick——聚合(Aggregation)
聚合(aggregation)指的是在Backbone输出的特征图聚合成一个特征向量来表征一个目标。,如下图表示的GAP。1、Attention pooling Attention是近年来比较热门的一个方向,它最初源于computer vision领域,是模仿人类视觉的一个杰出成果。人类的眼睛在观察图像是并不会一视同仁,而是将atten原创 2020-09-10 11:22:48 · 5548 阅读 · 0 评论 -
详解ReID的各部分组成及Trick——特征提取网络(Backbone)
1、ResNet 在FastReID中常用的ResNet结构有ResNet50和ResNet101。调用了在ImageNet上的预训练模型来作为Backbone,这样可以提高模型的性能。关于ResNet的设计,基本上接触过深度学习的都很熟悉了,这里为了方便对比主要列出其残差块的设计。2、ResNeXt ResNeXt是在ResNet上做原创 2020-09-10 11:14:50 · 9119 阅读 · 0 评论 -
详解ReID的各部分组成及Trick——预处理(Pre-processing)
数据的预处理也是深度学习中常见的增强策略之一,通过对训练数据做出适合任务域的处理,可以缓解训练集和测试集之间分别不同带来的模型过度拟合训练集而在测试集上的效果下降,提高模型的泛化能力。1、Resize 图片的输入尺寸影响模型每个特征图的尺寸,往往,越大的图片输入可以让模型学习到更加清晰高维度的特征,但是会对GPU的显存有更高的要求。对于图原创 2020-09-10 11:06:13 · 3449 阅读 · 0 评论 -
详解ReID的各部分组成及Trick——训练策略(Training strategy)
训练策略基本上对于每一个深度学习方法来说都很重要,选用到好的优化器或者学习策略可以使得我们的模型更快的收敛到最优值,比较常见需要调节的有如下:1、学习率(Learning rate) 在ReID中BoT把学习率设置为3.5xle-4,之后很多工作都沿用了这个学习率,一个好的学习率可以有助于我们收敛,当然对于不同的数据集来说,学习率的设定是原创 2020-09-10 10:58:02 · 4921 阅读 · 2 评论 -
详解ReID的各部分组成及Trick——FastReID中的baseline配置
FastReID:A Pytorch Toolbox for Real-world Person Re-identification论文地址:https://arxiv.org/pdf/2006.02631v1.pdf代码地址:https://github.com/JDAI-CV/fast-reidFastReID是京东开源的一个Baseline,该库可以称为产品级别的标准开源库,集成了近年来reid很多很好的操作,其结构图如下:在FastReID中提供了不同的baselines,使用了不同的ba原创 2020-09-10 10:46:45 · 7458 阅读 · 0 评论