目标检测算法介绍
目标检测是计算机视觉领域的一个重要任务,旨在识别图像或视频中所有感兴趣的物体,并确定其位置。目标检测算法在自动驾驶、安防监控、人脸识别等多个领域有着广泛的应用。本文将详细介绍目标检测算法的发展历程、经典算法、最新进展及其应用。
目录
目标检测概述
目标检测任务通常包括两个步骤:一是定位,即确定物体在图像中的位置;二是分类,即识别物体的类别。传统的目标检测方法基于滑动窗口和人工特征,而现代目标检测算法则广泛使用深度学习技术,实现了更高的精度和效率。
经典目标检测算法
HOG + SVM
HOG(Histogram of Oriented Gradients)是一种经典的特征提取方法,通过计算图像中局部梯度方向的直方图来描述物体的形状。HOG特征通常与SVM(Support Vector Machine)分类器结合使用,实现目标检测。
import cv2
from skimage.feature import hog
from sklearn.svm import LinearSVC
# 读取图像
image = cv2.imread('image.jpg', cv2.IMREAD_GRAYSCALE)
# 提取HOG特征
features, hog_image = hog(image, pixels_per_cell=(8, 8), cells_per_block=(2, 2), visualize=True)
# 训练SVM分类器
clf = LinearSVC()
clf.fit(features, labels)
Selective Search
Selective Search是一种区域生成算法,通过对图像进行分割并合并相似区域,生成候选区域。该方法在R-CNN等目标检测算法中得到广泛应用。
import selectivesearch
# 读取图像
image = cv2.imread('image.jpg')
# 执行Selective Search
regions = selectivesearch.selective_search(image, scale=500, sigma=0.9, min_size=10