- 博客(785)
- 资源 (33)
- 收藏
- 关注

原创 MambaMorph brain MR-CT
计算局部归一化互相关损失,用于衡量两个图像之间的相似性。: 通常用于图像配准任务,通过最大化图像之间的局部相似性来优化配准结果。: 使用卷积操作计算局部区域的均值和方差,然后计算归一化互相关。: 计算均方误差损失,用于衡量预测值和真实值之间的差异。: 适用于回归任务,如图像重建或配准。: 直接计算预测值和真实值之间的平方差,并取平均。: 计算Dice系数损失,用于衡量分割结果的重叠度。: 常用于医学图像分割任务,评估分割结果与真实标签的重叠程度。
2025-02-11 15:02:32
144

原创 生成纹理边缘保持loss记录
这里的梯度一致性是通过使用二维卷积操作来计算 ,卷积核是一个3x3的矩阵,其中中心值(对应图像中心的像素)的权重为8,其余为-1。这种卷积核可能用于检测图像中的边缘或梯度变化。计算一个边缘感知的损失值。该函数使用Laplacian算子来检测输入和目标图像的边缘,并计算它们之间的差异作为损失。总变异损失(Total Variation Loss)用于量化图像中相邻像素之间的变化程度,以鼓励平滑。1 计算两个图的ncc 值。
2024-11-27 14:51:15
136

原创 cpp知识点
C++11 智能指针详解_c++ 11所有的智能指针-CSDN博客百度实习面试:new和malloc的区别,什么时候用new 什么时候用mallc? 使用模板特化来计算阶乘: 类型列表的计算使用 lambda 来生成类型列表的长度。编译时条件选择通过 lambda 选择类型。 lambda 可以在模板元编程中应用于多个场景,以下是一些额外的例子:使用 lambda 来计算一个类型序列中的最大值。示例 6: 计算类型的总和使用 lambda 动态计算类型的总和
2024-07-16 17:45:36
574
1

转载 【cpp中的虚函数与继承个人笔记总结】
https://www.cnblogs.com/jianyungsun/p/6361670.html继承:继承主要实现重用代码,节省开发时间。1、C#中的继承符合下列规则: 继承是可传递的。如果C从B中派生,B又从A中派生,那么C不仅继承了B中声明的成员,同样也继承了A中的成员。Object类作为所有类的基类。 派生类应当是对基类的扩展。派生类可以添加新的成员,但不能除...
2018-10-12 00:02:48
382
原创 svd分解求旋转平移矩阵
SVD分解(奇异值分解)求旋转矩阵_奇异值分解求解旋转矩阵-CSDN博客(28 封私信 / 4 条消息) ICP的svd解法一定满足旋转矩阵的约束吗? - 知乎你不知道的SVD 算法------点云配准+绝对定向+坐标转换_svd 解算位姿 最少要几个点-CSDN博客Python求解两组三维点之间的刚体变换矩阵_python点云刚体变换-CSDN博客手眼标定难题:3D点云相机与机械臂的坐标转换-CSDN博客数值方法解出的近似旋转矩阵转化为正交的标准旋转矩阵 旋转矩阵标准化 正交矩阵_优化过程中怎么保证旋转矩
2025-07-03 17:38:33
221
原创 三维重建核心之泊松重建原理及C++实现
虽然,对于任何平滑滤波器≈F都正确,但在实践中,希望滤波器能够满足两个条件:一方面是足够窄,这样就不会过度平滑数据,另一方面是足够宽,使得p上的积分可以很好地近似于s.p处的值乘以斑块面积。由于模型表面采样的定向点与模型的隐函数之间存在积分关系,即隐函数的梯度是一个几乎处处为零的向量场(因为指示函数几乎处处为常数),除了靠近曲面的点,是等于向内曲面法线。形成向量场后,要求解函数使。因此,给定一个维向量v,它的第0个坐标是,其目标是求解函数,使得将的拉普拉斯函数投影到每个Fo上得到的向量尽可能接近v。
2025-06-27 17:36:39
969
原创 RAS 和 LPS 三维医学图像坐标方向
它们都是用来描述三维医学图像(如CT、MRI)方向的“解剖学坐标系”,以确保无论患者在扫描时如何摆放,我们都能以统一、标准的方式来理解图像的方向。这是神经影像研究和许多开源软件(如3D Slicer, Freesurfer)中非常常用的一个。标准和许多临床影像系统及软件(如ITK的默认方向)中被广泛使用。这个坐标系同样非常普遍,尤其是在。,而 Z 轴保持不变。
2025-06-27 16:36:32
210
原创 opencv二维码
【OpenCV】(一)wechat_qrcode检测二维码_opencv_wave789-2048 AI社区(25 封私信 / 9 条消息) 使用 OpenCV + 微信二维码引擎实现二维码识别 - 知乎
2025-06-22 00:29:12
177
转载 基于拉普拉斯金字塔实现图像融合(步骤 + 代码)
最后,我们将组合拉普拉斯算子添加到原始高斯调整大小图像中,并乘以各自的掩码,从而重建每个比例的原始图像。我们重复执行此操作,对结果进行上采样,并将结果添加到组合拉普拉斯算子中,直到我们在原始比例下获得完全混合的图像。简而言之,高斯金字塔是一系列图像,从原始图像开始,原始图像缩小 1/2,原始图像缩小 1/4,依此类推。使用 alpha+(1-alpha) 组合,在每个尺度上,我们将蒙版乘以图像 A 的拉普拉斯,然后将图像 B 的拉普拉斯乘以 (1-mask) 并将两者相加。接下来,我们构建拉普拉斯金字塔。
2025-06-09 10:56:29
69
原创 channels1之GN,IN,LN异同
如果所有层都设置 affine=False (对于 LayerNorm 是 elementwise_affine=False):那么 nn.GroupNorm(1, 1, affine=False)、nn.InstanceNorm2d(1, affine=False) 和 nn.LayerNorm([1, H, W], elementwise_affine=False) 的输出将会是完全相同的,因为它们的核心归一化逻辑一致且没有后续的仿射变换。它会独立地对每个样本的每个通道内的 H*W 个元素进行归一化。
2025-06-05 16:33:04
720
原创 记录一次lambda在libtorch遇见的坑
原始代码问题是定义const int64_t c = input.size(1);实际发现lamda捕获不了局部变量c!!!deepseek给出的修改是将c。
2025-05-26 19:12:29
286
原创 混合精度计算那些事
optimizer.step(scale=scale) 更新时梯度反缩放,反缩放后梯度用的fp16还是32?,最终用于更新 FP32 主权重(Master Weights)。这里有个疑问:梯度更新显式转换为 FP32,岂不是显存又大了?梯度转换为 FP32 后反缩放,再更新 FP32 主权重。:临时且短暂,通过显存复用和异步操作几乎可忽略。:将 FP16 梯度除以缩放因子,恢复真实值。梯度计算时候用的是fp16,激活值和梯度的显存占用与。强相关,且会逐层累积。
2025-04-23 11:08:12
883
原创 nifty数据格式中qform ,sform ,仿射变换
它们的作用是定义图像数据在真实世界(例如 MRI 扫描仪坐标系)中的位置、方向和缩放。是两种不同的方式,用于存储。
2025-04-22 18:12:11
363
原创 实战 | 红酒瓶标签曲面展平+文字识别(附源码)
本文的目标是让计算机从一张简单的照片中读取一瓶红酒上标签文字的内容。因为酒瓶标签上的文本在圆柱体上是扭曲的,我们无法直接提取并识别字符,所以一般都会将曲面标签展平之后再做识别,以提升准确率。
2025-04-14 15:52:52
81
原创 线程阻塞问题研究
1 条件变量+锁常用于线程间同步:必须与互斥锁(mutex)配合使用,通过wait()阻塞线程,直到其他线程调用或2 异步多线程常用于非阻塞任务,主线程无序等待子线程结果。通过或std::async实现,子任务在后台执行,结果通过异步获取。3 遇见的问题:当使用调用一个的函数(如无限循环的)时,会导致对象永远无法就绪。
2025-04-09 14:06:17
244
翻译 【无标题】
正在上传…重新上传取消正在上传…重新上传取消正在上传…重新上传取消正在上传…重新上传取消正在上传…重新上传取消正在上传…重新上传取消正在上传…重新上传取消正在上传…重新上传取消正在上传…重新上传取消正在上传…重新上传取消正在上传…重新上传取消正在上传…重新上传取消正在上传…重新上传取消正在上传…重新上传取消正在上传…重新上传取消正在上传…重新上传取消正在上传…重新上传取消正在上传…重新上传取消正在上传…重新上传取消正在上传…重新上传取消正在上传…重新上传取消正在上传…重新上传取消正在上传…重新上传取消正在上
2025-03-18 11:26:55
59
原创 ubuntu挂载固态硬盘
Ubuntu 中挂载位于/dev/sdc1首先,确保设备/dev/sdc1创建一个目录作为挂载点(例如/mnt/ssd1.记下输出的UUID(例如。
2025-03-05 11:23:43
521
转载 Transformer三大点
核心创新作用关键公式突破点自注意力机制建立全局依赖关系解决了 RNN 远程依赖问题,并且支持并行计算位置编码提供 Token 的位置信息Transformer 无需 RNN 结构即可处理序列数据并行化序列建模提升计算效率,使 Transformer 能高效训练让 Transformer 具备强大的扩展性,适用于大规模预训练这三大核心创新彻底改变了深度学习的范式,推动了大规模语言模型(如 GPT、BERT)的发展。
2025-03-04 10:04:37
90
原创 奇异值分解和svd相关知识点
奇异值分解(SVD)拟合平面超详细解释奇异值分解(SVD)【附例题和分析】_线性代数_唠嗑!-GitCode 开源社区奇异值分解(SVD)原理详解_svd分解反注水-CSDN博客SVD 直接处理数据矩阵,无需显式计算协方差矩阵PCA的问题其实是一个基的变换,使得变换后的数据有着最大的方差。方差的大小描述的是一个变量的信息量对中心化后的数据矩阵 进行奇异值分解(SVD):
2025-02-25 13:52:28
310
原创 超分辨率体积重建实现术前前列腺MRI和大病理切片组织病理学图像的3D配准
摘要:磁共振成像(MRI)在前列腺癌诊断和治疗中的应用正在迅速增加。然而,在MRI上识别癌症的存在和范围仍然具有挑战性,导致即使是专家放射科医生在检测结果上也存在高度变异性。提高MRI上的癌症检测能力对于减少这种变异性并最大化MRI的临床效用至关重要。迄今为止,这种改进受到缺乏准确标注的MRI数据集的限制。通过接受根治性前列腺切除术的患者数据,可以将切除前列腺的数字化组织病理学图像与术前MRI进行空间对齐。这种对齐通过将组织病理学图像中的癌症投影到MRI上,有助于在MRI上绘制详细的癌症标签。
2025-01-23 18:01:31
696
原创 c++的构造函数
1 列表初始化C++ 初始化列表_c++列表初始化-CSDN博客C++构造函数之初始化列表_哔哩哔哩_bilibiliC++成员初始化列表(构造函数后加冒号:){}(用于在构造函数中初始化类成员变量,可以避免使用构造函数体内的赋值语句,可以确保成员变量在对象构造之初就已经被正确初始化,提高代码的性能和可读性)_构造函数后面加冒号,跟成员变量-CSDN博客【C++】构造函数调用规则 ( 默认构造函数 | 默认无参构造函数 | 默认拷贝构造函数 | 构造函数调用规则说明 )-CSDN博客
2025-01-23 15:44:05
259
原创 c++使用小技巧1
1 指针做形参,释放内存,是值传递只修改指针的指向,不修改指针本身。2 二级指针做函数形参,可以指向指针数据,表示多个变长数据。
2025-01-23 15:20:33
118
原创 人工势场法-路径规划的理论与代码实现
通过计算引力和斥力的合力,机器人可以动态调整运动方向,避开障碍物并最终到达目标点。:接近目标点时斥力的衰减范围。,吸引机器人向目标点移动。,阻止机器人靠近障碍物。:机器人需要到达的位置。:机器人每次移动的步长。:算法的最大运行次数。:机器人的初始位置。:障碍物的位置列表。
2025-01-21 16:22:25
381
原创 std::async使用
是 C++ 中用于简化异步编程的工具,它适合多种场景,尤其是在需要异步执行任务并可能获取其结果时。对于文件读写、网络请求等 I/O 操作,通常会有较长的等待时间。如果异步任务中抛出了异常,异常会通过。可以将这些操作放到后台线程中执行,避免阻塞主线程。将这些任务放到后台线程中执行,避免阻塞主线程。当你有多个独立的任务需要并行执行时,可以使用。当你有需要长时间运行的计算任务时,可以使用。对于可以分解为多个子任务的问题,可以使用。并行执行子任务,然后在主线程中合并结果。实现生产者和消费者之间的协调后续使用。
2025-01-16 17:32:16
539
LUNA16数据集.doc
2020-03-07
Tesseract 4.0 for VS2015及OpenCV数字识别示例程序
2018-11-05
LITS2017肝脏肿瘤分割挑战数据集.txt
2019-08-27
LITS2017肝脏肿瘤分割挑战数据集下载地址百度云.txt
2019-12-20
Hessian矩阵以及在血管增强中的应用—OpenCV3和c++版本代码工程
2020-03-02
Promise2012_前列腺MR图像.txt
2019-08-27
多模态脑肿瘤分割挑战2018.txt
2019-08-27
opencv_hand.rar
2019-09-26
gflags.zip
2019-12-19
CAMUS 心脏分割超声图像数据集,含500名患者的超声数据
2021-01-02
openvino_insightface_fp32人脸识别模型
2020-11-22
zbar_win64.zip
2020-04-16
openvino_insightface_fp32人脸识别模型
2020-11-22
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人