负载均衡——一致性哈希算法

不加虚拟节点的

在这里插入图片描述

加虚拟节点的

在这里插入图片描述

一致性哈希算法的优势

使用:hash(key)%容器,如果加入或者删除节点,会将所有key对应的服务器重新排序。
一致性哈希算法使用TreeMap来实现,当由节点加入或者删除时,只会影响一小部分。

原理

物理节点和虚拟节点

物理节点是物理机的地址,一个物理节点可以对应多个虚拟节点。
当一个物理节点退出系统时,其所有虚拟节点也会从哈希环中被移除。

虚拟节点的作用:

  1. 更均匀的数据分布
  2. 动态平衡负载,对于性能更强的物理节点,可以增加其虚拟节点的数量,让其承担更多的数据负载

通过TreeMap来实现一致性哈希算法的实践

虚拟节点:是通过key为虚拟节点的位置,而value为真实的物理节点来实现。

public class ConsistentHashing {
   
   

    private final TreeMap<Long, String> circle = new TreeMap<>();
    private final int numberOfReplicas;//每个物理节点的虚拟节点数量

    public ConsistentHashing(int numberOfReplicas) {
   
   
        this.numberOfReplicas = numberOfReplicas;
    }

    // 添加一个节点
    public void addNode(String node) {
   
   
        for (int i = 0; i < numberOfReplicas; i++) {
   
   
            long hash = hash(node + i);
            circle.put(hash, node);
        }
    }

    // 移除一个节点
    public void removeNode(String node
### 一致性哈希算法概述 一致性哈希算法旨在解决传统哈希方法在分布式环境中遇到的数据分布不均和扩展性差的问题[^2]。该算法通过特定的设计使得当服务器集群发生变化时,只有部分数据需要重新分配,从而减少了大规模迁移的需求。 ### 工作原理 一致性哈希的核心在于构建了一个虚拟环形空间,并在这个圆上均匀分布着各个节点(即服务器)。具体来说: - **初始化阶段**:首先计算每台物理机器对应的多个伪随机位置点并将其放置于0到2^32-1构成的整数区间形成的闭合环路上; - **映射过程**:对于每一个待存储的对象key,利用相同的散列函数得出其数值表示形式后也放到这个环上去;此时顺时针方向离它最近的那个节点就是负责保存此对象副本的地方。 这种机制确保即使有新成员加入或旧成员离开,也只有少量受影响区域内的项目会被重定位至新的目标地址处[^3]。 ```python import hashlib def consistent_hash(key, num_replicas=3): """简单的模拟一致哈希""" hash_value = int(hashlib.md5(str(key).encode()).hexdigest(), 16) return (hash_value % 360) / float(num_replicas) print(f"Key 'example' hashes to position {consistent_hash('example'):.2f} on the ring.") ``` ### 应用场景 在分布式缓存系统中,如Memcached、Redis Cluster等,采用了一致性哈希技术来管理不同实例间键值对的分发策略。这不仅提高了系统的可维护性和容错能力,还有效降低了因单点故障而导致的服务中断风险[^1]。 另外,在负载均衡方面也有广泛应用——通过对客户端请求执行相同的一致性哈希运算可以实现较为公平的任务调度方案,同时保持良好的性能表现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值