基于邻接矩阵的判断有向图是否有环

本文深入探讨了如何使用邻接矩阵表示的图结构来检测是否存在环。通过详细解释一个环检测算法,包括输入邻接矩阵、计算节点入度、使用队列进行拓扑排序并判断是否有环的完整过程。该算法对于理解图论中环的概念及其检测方法至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

输入:[[0,1,0],[0,0,1],[1,0,0]]

输出:1

解释:1->2->3->1构成一个环,所以返回1表示有环

输入:[[0,1,0],[0,0,1],[0,0,0]]

输出:0

解释:1->2->3,这是一条拓扑路径,所以返回0表示没有环

#include<iostream>
#include<vector>
#include<queue>
#include<cstdio>
#include<sstream>

using namespace std;

bool ExistLoop(const vector<vector<bool>>& AdajstGraph){
    int Length = AdajstGraph.size();
    vector<int> in(Length,0);
    queue<int> q;
    for(int i = 0;i < Length;i ++){
        for(int j = 0;j < Length;j ++){
            if(AdajstGraph[j][i] == 1){
                in[i]++;
            }
        }
    }
    for(int i = 0;i < Length;i ++){
        if(in[i] == 0){
            q.push(i);
        }
    }
    int NumOfList = 0;
    while(!q.empty()){
        int p = q.front();
        q.pop();
        NumOfList++;
        for(int i = 0;i < Length;i ++){
            if(AdajstGraph[p][i] == 1){
                in[i]--;
                if(in[i] == 0){
                    q.push(i);
                }
            }
        }
    }
    return NumOfList != Length;
}

int main(){
    string s;
    vector<vector<bool>> AdajstGraph;
    getline(cin,s);
    for(int i = 1;i < s.length();i ++){
        if(s[i] == '['){
            AdajstGraph.push_back(vector<bool>());
        }
        else if(s[i] == '0' || s[i] == '1'){
            AdajstGraph.back().push_back(s[i] - '0');
        }
    }
    if(ExistLoop(AdajstGraph)){
        printf("1\n");
    }
    else{
        printf("0\n");
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值