整理研究方向(1)【未完成】

这篇博客梳理了多个知名研究团队的工作,包括郑宇、林友芳、姚骅修、王韫博等团队。内容涵盖时空预测、元学习、时空数据挖掘、时间序列分析、计算机视觉等多个领域。各团队的研究涵盖了从论文发表到研究方向的转变,以及对未来的思考和心得。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

系列文章目录

整理研究方向(2)


郑宇团队工作

2022

  1. Discovering Actual Delivery Locations from Mis-Annotated Couriers‘ Trajectories(ICDE2022) paper
  2. TraSS: Efficient Trajectory Similarity Search Based on Key-Value DataStores (ICDE2022) paper 别人的论文笔记
  3. Detecting Loaded Trajectories for Hazardous Chemicals Transportation (ICDE2022) paper
  4. DeepThermal: Combustion Optimization for Thermal Power Generating Units Using Offline Reinforcement Learning (AAAI2022) paper
  5. Shortening passengers’ travel time: A dynamic metro train scheduling approach using deep reinforcement learning (TKDE) paper 别人的论文笔记
  6. Crowd-sensing Enhanced Parking Patrol using Sharing Bikes’ Trajectories (TKDE) paper 别人的论文笔记

2021

  • Distributed Spatio-Temporal k Nearest Neighbors Join (SIGSPATIAL) (System) paper
  • JUST-Traj: A Distributed and Holistic Trajectory Data Management System (Demo Paper) (SIGSPATIAL) (System) paper
  • SALON: A Universal Stay Point-Based Location Analysis Platform (Demo paper) (SIGSPATIAL) (System) paper
  • ICFinder: A Ubiquitous Approach to Detecting Illegal Hazardous Chemical Facilities with Truck Trajectories (Short Paper) (SIGSPATIAL) paper
  • POI Alias Discovery in E-commerce Delivery Address Data using User Check-ins (Short Paper) (SIGSPATIAL) paper
  • Filling Delivery Time Automatically Based on Couriers’ Trajectories (TKDE) paper
  • Network-Wide Traffic States Imputation Using Self-interested Coalitional Learning (KDD) paper
  • MTrajRec: Map-Constrained Trajectory Recovery via Seq2Seq Multi-task Learning (KDD) paper
  • TrajMesa: A Distributed NoSQL-Based Trajectory Data Management System (TKDE) paper
  • Visual Cascade Analytics of Large-scale Spatiotemporal Data (IEEE TVCG) paper
  • AutoSTG: Neural Architecture Search for Predictions of Spatio-Temporal Graphs (WWW) paper
  • Fine-Grained Urban Flow Prediction (WWW) paper
  • Traffic Flow Forecasting with Spatial-Temporal Graph Diffusion Network (AAAI) paper
  • Robust Spatio-Temporal Purchase Prediction via Deep Meta Learning (AAAI) paper

总结与分析

研究方向的转变

心得体会–我们可以做什么呢?


北交林友芳团队

包括万怀宇郭晟楠等人,为ASTGCNSTSGCN等作者团队

时空数据挖掘

  • Traffic Inflow and Outflow Forecasting by Modeling Intra- and Inter-Relationship between Flows (TIST 2022)
  • DeepRoute+: Modeling Couriers’ Spatial-Temporal Behaviors and Decision Preferences for Package Pick-up Route Prediction (TIST) paper
  • Graph2Route: A Dynamic Spatial-Temporal Graph Neural Network for Pick-up and Delivery Route Prediction (KDD 2022)
  • GSNet: Learning Spatial-Temporal Correlations from Geographical and Semantic Aspects for Traffic Accident Risk Forecasting (AAAI 2021) paper
  • Pre-training Time-Aware Location Embeddings from Spatial-Temporal Trajectories (TKDE 2021) paper
  • Learning Dynamics and Heterogeneity of Spatial-Temporal Graph Data for Traffic Forecasting (TKDE 2021) paper
  • Package Pick-up Route Prediction via Modeling Couriers’ Spatial-Temporal Behaviors (ICDE 2021) paper

时间序列分析

  • Multi-View Spatial-Temporal Graph Convolutional Networks with Domain Generalization for Sleep Stage Classification (2021 IEEE TNSRE) paper
  • HetEmotionNet: Two-Stream Heterogeneous Graph Recurrent Neural Network for Multi-modal Emotion Recognition (2021 ACM MM) paper
  • SalientSleepNet: Multimodal Salient Wave Detection Network for Sleep Staging (2021 IJCAI) paper

计算机视觉

  • Flexible Hybrid Lenses Light Field Super-Resolution using Layered Refinement (2022 ACM MM)
  • Occlusion-aware Bi-directional Guided Network for Light Field Salient Object Detection (2021 ACM MM) paper
  • Removing Foreground Occlusions in Light Field using Micro-lens Dynamic Filter (2021 IJCAI) paper
  • Attention-based Multi-Level Fusion Network for Light Field Depth Estimation (2021 AAAI) paper
  • End-to-End Light Field Spatial Super-Resolution Network using Multiple Epipolar Geometry (2021 TIP) paper

复杂网络和社交网络挖掘

  • Context-aware Distance Measures for Dynamic Networks (2021 TWEB) paper

总结与分析

研究方向的转变

心得体会–我们可以做什么呢?


斯坦福/宾夕法尼亚姚骅修 团队

DMVSTSTDN的作者团队

Preprints

  • Diversify and Disambiguate: Learning From Underspecified Data (短文在ICML 2022) paper
  • Transferable Neural Processes for Hyperparameter Optimization (短文在 NIPS 2019) paper
  • Few-Shot Learning With Weak Supervision (ICLR 2021 Workshop) paper

2022

  • Improving Out-of-Distribution Robustness via Selective Augmentation (ICML) paper
  • Meta-Learning with Fewer Tasks through Task Interpolation (ICLR) paper
  • Improving Meta-learning for Low-resource Text Classification and Generation via Memory Imitation (ACL) paper
  • Spatio-Temporal Graph Few-Shot Learning with Cross-City Knowledge Transfer (KDD) paper
  • Artificial Intelligence for Retrosynthesis Prediction, Engineering (Engineering) paper

2021

  • Meta-learning with an Adaptive Task Scheduler (NIPS) paper
  • Functionally Regionalized Knowledge Transfer for Low-resource Drug Discovery (NIPS) paper
  • Knowledge-Aware Meta-learning for Low-Resource Text Classification (EMNLP) paper
  • Improving Generalization in Meta-learning via Task Augmentation (ICML) paper
  • Relation-aware Meta-learning for E-commerce Market Segment Demand Prediction with Limited Records (WSDM) paper
  • Neural Utility Functions (AAAI) paper
  • Inductive Contextual Relation Learning for Personalization (TOIS) paper

2020

  • Online Structured Meta-learning (NIPS) paper
  • Autom
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值