系列文章目录
整理研究方向(2)
郑宇团队工作
2022
- Discovering Actual Delivery Locations from Mis-Annotated Couriers‘ Trajectories(ICDE2022) paper
- TraSS: Efficient Trajectory Similarity Search Based on Key-Value DataStores (ICDE2022) paper 别人的论文笔记
- Detecting Loaded Trajectories for Hazardous Chemicals Transportation (ICDE2022) paper
- DeepThermal: Combustion Optimization for Thermal Power Generating Units Using Offline Reinforcement Learning (AAAI2022) paper
- Shortening passengers’ travel time: A dynamic metro train scheduling approach using deep reinforcement learning (TKDE) paper 别人的论文笔记
- Crowd-sensing Enhanced Parking Patrol using Sharing Bikes’ Trajectories (TKDE) paper 别人的论文笔记
2021
- Distributed Spatio-Temporal k Nearest Neighbors Join (SIGSPATIAL) (System) paper
- JUST-Traj: A Distributed and Holistic Trajectory Data Management System (Demo Paper) (SIGSPATIAL) (System) paper
- SALON: A Universal Stay Point-Based Location Analysis Platform (Demo paper) (SIGSPATIAL) (System) paper
- ICFinder: A Ubiquitous Approach to Detecting Illegal Hazardous Chemical Facilities with Truck Trajectories (Short Paper) (SIGSPATIAL) paper
- POI Alias Discovery in E-commerce Delivery Address Data using User Check-ins (Short Paper) (SIGSPATIAL) paper
- Filling Delivery Time Automatically Based on Couriers’ Trajectories (TKDE) paper
- Network-Wide Traffic States Imputation Using Self-interested Coalitional Learning (KDD) paper
- MTrajRec: Map-Constrained Trajectory Recovery via Seq2Seq Multi-task Learning (KDD) paper
- TrajMesa: A Distributed NoSQL-Based Trajectory Data Management System (TKDE) paper
- Visual Cascade Analytics of Large-scale Spatiotemporal Data (IEEE TVCG) paper
- AutoSTG: Neural Architecture Search for Predictions of Spatio-Temporal Graphs (WWW) paper
- Fine-Grained Urban Flow Prediction (WWW) paper
- Traffic Flow Forecasting with Spatial-Temporal Graph Diffusion Network (AAAI) paper
- Robust Spatio-Temporal Purchase Prediction via Deep Meta Learning (AAAI) paper
总结与分析
研究方向的转变
心得体会–我们可以做什么呢?
北交林友芳团队
包括万怀宇,郭晟楠等人,为ASTGCN、STSGCN等作者团队
时空数据挖掘
- Traffic Inflow and Outflow Forecasting by Modeling Intra- and Inter-Relationship between Flows (TIST 2022)
- DeepRoute+: Modeling Couriers’ Spatial-Temporal Behaviors and Decision Preferences for Package Pick-up Route Prediction (TIST) paper
- Graph2Route: A Dynamic Spatial-Temporal Graph Neural Network for Pick-up and Delivery Route Prediction (KDD 2022)
- GSNet: Learning Spatial-Temporal Correlations from Geographical and Semantic Aspects for Traffic Accident Risk Forecasting (AAAI 2021) paper
- Pre-training Time-Aware Location Embeddings from Spatial-Temporal Trajectories (TKDE 2021) paper
- Learning Dynamics and Heterogeneity of Spatial-Temporal Graph Data for Traffic Forecasting (TKDE 2021) paper
- Package Pick-up Route Prediction via Modeling Couriers’ Spatial-Temporal Behaviors (ICDE 2021) paper
时间序列分析
- Multi-View Spatial-Temporal Graph Convolutional Networks with Domain Generalization for Sleep Stage Classification (2021 IEEE TNSRE) paper
- HetEmotionNet: Two-Stream Heterogeneous Graph Recurrent Neural Network for Multi-modal Emotion Recognition (2021 ACM MM) paper
- SalientSleepNet: Multimodal Salient Wave Detection Network for Sleep Staging (2021 IJCAI) paper
计算机视觉
- Flexible Hybrid Lenses Light Field Super-Resolution using Layered Refinement (2022 ACM MM)
- Occlusion-aware Bi-directional Guided Network for Light Field Salient Object Detection (2021 ACM MM) paper
- Removing Foreground Occlusions in Light Field using Micro-lens Dynamic Filter (2021 IJCAI) paper
- Attention-based Multi-Level Fusion Network for Light Field Depth Estimation (2021 AAAI) paper
- End-to-End Light Field Spatial Super-Resolution Network using Multiple Epipolar Geometry (2021 TIP) paper
复杂网络和社交网络挖掘
- Context-aware Distance Measures for Dynamic Networks (2021 TWEB) paper
总结与分析
研究方向的转变
心得体会–我们可以做什么呢?
斯坦福/宾夕法尼亚姚骅修 团队
Preprints
- Diversify and Disambiguate: Learning From Underspecified Data (短文在ICML 2022) paper
- Transferable Neural Processes for Hyperparameter Optimization (短文在 NIPS 2019) paper
- Few-Shot Learning With Weak Supervision (ICLR 2021 Workshop) paper
2022
- Improving Out-of-Distribution Robustness via Selective Augmentation (ICML) paper
- Meta-Learning with Fewer Tasks through Task Interpolation (ICLR) paper
- Improving Meta-learning for Low-resource Text Classification and Generation via Memory Imitation (ACL) paper
- Spatio-Temporal Graph Few-Shot Learning with Cross-City Knowledge Transfer (KDD) paper
- Artificial Intelligence for Retrosynthesis Prediction, Engineering (Engineering) paper
2021
- Meta-learning with an Adaptive Task Scheduler (NIPS) paper
- Functionally Regionalized Knowledge Transfer for Low-resource Drug Discovery (NIPS) paper
- Knowledge-Aware Meta-learning for Low-Resource Text Classification (EMNLP) paper
- Improving Generalization in Meta-learning via Task Augmentation (ICML) paper
- Relation-aware Meta-learning for E-commerce Market Segment Demand Prediction with Limited Records (WSDM) paper
- Neural Utility Functions (AAAI) paper
- Inductive Contextual Relation Learning for Personalization (TOIS) paper
2020
- Online Structured Meta-learning (NIPS) paper
- Autom