监督学习和无监督学习的区别(机器学习)

本文介绍了机器学习的两大类:监督学习和无监督学习。监督学习包括回归问题和分类问题,并介绍了支持向量机算法。无监督学习则侧重于聚类算法的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

机器学习主要分为两类

  1. 监督学习
  2. 无监督学习

两者的区别主要是是否需要人工参与数据结果的标注


监督学习:教计算机如何去完成预测任务(有反馈),预先给一定数据量的输入和对应的结果即训练集,建模拟合,最后让计算机预测未知数据的结果。
监督学习一般有两种

  1. 回归问题
    就是给出一系列数据然后预测任意想要的数据,比如给出了一系列的房屋面积-价格数据,根据这些数据来预测任意面积的房屋价格。给出照片-年龄数据集,预测给定照片的年龄
    在这里插入图片描述
  2. 分类问题
    根据数据预测被预测对象属于哪个分类,比如癌症肿瘤这个例子,针对诊断结果,分别分类为良性或恶性。还例如垃圾邮件分类问题,也同样属于监督学习中的分类问题
    在这里插入图片描述
    支持向量机这个算法,旨在解决当特征量很大的时候(特征即如癌症例子中的肿块大小,颜色,气味等各种特征),计算机内存一定会不够用的情况。支持向量机能让计算机处理无限多个特征

无监督学习:相对于监督学习,训练集不会有人为标注的结果(无反馈),我们不会给出结果或无法得知训练集的结果是什么样,而是单纯由计算机通过无监督学习算法自行分析,从而“得出结果”。计算机可能会把特定的数据集归为几个不同的簇,故叫做聚类算法
无监督学习一般也有两种:

  1. 聚类
    新闻聚合:例如谷歌新闻这样的网站中,每天后台都会收集成千上万的新闻,然后将这些新闻分组成一个个的新闻专题,这样一个又一个聚类,就是应用了无监督学习的结果
  2. 非聚类
    鸡尾酒问题:在鸡尾酒会上,大家说话声音彼此重叠,几乎很难分辨出面前的人说了什么。我们很难对于这个问题进行数据标注,而这里的通过机器学习的无监督学习算法,就可以将说话者的声音同背景音乐分离出来
    在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值