- 博客(2083)
- 收藏
- 关注

原创 数模应用-MATLAB基础知识精讲系列文章目录介绍(持续补充ing)
本专栏以MATLAB基础知识讲解为主,相信有很多刚入门的理工科小伙伴,对于MATLAB这个软件还不是很熟悉,在这里给各位学弟学妹们一个小建议:大学期间数模竞赛如果有机会尽量去参加,一方面是对自己所学知识的一次检验,另外,如果能在比赛中获得好名次的话,对你之后的求职升学等方面都会有很大助力!本专栏的进阶版参见博主的这个专栏,里面详细列举了各类算法的算法原理、应用案例及多种编程语言的代码实现,配合基础篇一起学习能达到事半功倍的效果哦。
2022-10-08 09:03:23
897

原创 数学建模-MATLAB算法精讲系列文章目录介绍(持续补充ing)
结合实际案例,从算法背景开始一步步到最终代码实现,本系列文章主要以matlab代码为主,为照顾学习其他编程语言的小伙伴,大部分算法会附带python、Java、C++、R语言等市面上主流代码,满足各层面的用户学习。部分内容参见网络文献,如有侵权,请联系博主删除本专栏中涉及的MATLAB基础知识讲解篇详见文章内容主要包括算法背景、算法原理、算法优缺点、算法伪代码、算法的应用场景、算法的应用案例、算法的拓展以及多语言实现算法的代码化。
2022-08-30 09:26:54
2843
原创 MATLAB算法实战应用案例精讲-【大模型】DPO损失函数(附python代码实现)
为了解决标准 DPO 方法中存在的降低偏好样本似然性的问题,作者设计了一种新的损失函数和训练程序,称为 DPO-Positive (DPOP)。DPOP 的核心目标是。它通过在损失函数中引入一个新的惩罚项来实现这一目标,该惩罚项专门用于激励模型维持偏好样本的高对数似然性。DPOP 完整损失函数如下:DPOP 通过其新增的惩罚项来解决 DPO 的失败模式:DPOP 损失函数保留了在 Bradley-Terry 模型下拟合偏好数据的特性。
2025-07-20 00:30:00
4
原创 目标检测YOLO实战应用案例100讲-机载多源融合目标智能检测
面对机载平台下单一传感器在恶劣环境中的观测性能下降的难题,利用多源传感 器集成观测技术可以形成优势互补,保障机载平台高可靠、高精度、全天候观测。因 此,多源融合观测系统在灾情搜救、自然灾害评估、军事目标侦查等领域都发挥着不 可替代的作用。在机载平台的多源观测系统中,获取的数据具有复杂性、多样性,如 何在不同传感器得到的不同背景环境、不同成像分辨率中融合各个传感器的观测优势, 准确快速地检测出特定目标是目前研究的难题。
2025-07-19 00:30:00
15
原创 MATLAB基础应用精讲-【大模型】DPO损失函数(附python代码实现)
随着预训练LLM的发展,在各种任务的零样本和少样本场景中取得了出色的性能。然而,当应用于下游任务时,LLM的性能往往会下降。虽然使用人工微调模型有助于对齐和性能提升,但获得人类对响应的偏好通常更可行。因此,最近的研究转向使用人类偏好微调LLM。人类反馈的强化学习(RLHF):提出通过使用近端策略优化(PPO)等强化算法,使用Bradley-Terry(BT)模型训练的奖励模型来优化最大奖励操作。虽然RLHF增强了模型的性能,但它要应对强化学习中固有的不稳定性、reward hacking和可扩展性等挑战。
2025-07-18 00:30:00
12
原创 目标检测YOLO实战应用案例100讲-YOLOv13超图高阶建模+轻量化模块
YOLOv13是YOLO系列的最新版本,专门针对目标检测任务进行优化。该模型能够实时检测图像中的目标对象并生成精确的边界框。需要注意的是,目前YOLOv13主要支持检测任务。如需进行其他计算机视觉任务(如分割、姿态估计等),建议使用功能更全面的YOLO11版本。YOLOv13提供了多种规模的模型架构以适应不同的应用场景和性能需求。模型规模从小到大依次为Nano (N)、Small (S)、Medium (M)、Large (L)和eXtra Large (X)。
2025-07-15 00:30:00
38
转载 算法实战应用案例精讲-【人工智能】大模型(LLM)推理优化
大多数流行的only-decode LLM(例如 GPT-4、Qwen系列)都是针对因果建模目标进行预训练的,本质上是作为下一个词预测器。「这些 LLM 将一系列tokens作为输入,并自回归生成后续tokens,直到满足停止条件」(例如,生成tokens数量的限制或遇到停止词)或直到生成特殊的<end>标记生成结束的tokens。该过程涉及两个阶段:预填充阶段和解码阶段。请注意,tokens是模型处理的语言的原子部分。一个tokens大约是四个英文字符。所有自然语言在输入模型之前都会转换为tokens。
2025-07-14 00:30:00
57
原创 MATLAB基础应用精讲-【自动驾驶】VLA模型(概念篇)(二)
VLA模型是在视觉语言模型(VLM)的基础上发展而来的。VLM是一种能够处理图像和自然语言文本的机器学习模型,它可以将一张或多张图片作为输入,并生成一系列标记来表示自然语言。然而,VLA不仅限于此,它还利用了机器人或汽车运动轨迹的数据,进一步训练这些现有的VLM,以输出可用于机器人或汽车控制的动作序列。通过这种方式,VLA可以解释复杂的指令并在物理世界中执行相应的动作。
2025-07-13 00:30:00
30
原创 算法实战应用案例精讲-【人工智能】大模型知识科普详细版-「推理基准测试」及其「核心评估指标」
稀疏 MoE 层:取代传统 Transformer 的前馈网络(FFN)层。MoE 层由多个“专家”(如 8 个)组成,每个专家是一个独立的神经网络,通常是 FFN,也可以是更复杂的结构,甚至是嵌套的 MoE 形成层级式结构。门控网络或路由:决定哪些 Token 由哪个专家处理。例如,“More”可能被分配给第二个专家,而“Parameters”可能被分配给第一个。有时,一个 Token 甚至可以被多个专家处理。路由方式由可学习的参数控制,并与整个模型一同训练,是 MoE 关键机制之一。
2025-07-13 00:30:00
20
原创 MATLAB基础应用精讲-【自动驾驶】VLA模型(概念篇)(一)
近年来,视觉 - 语言 - 动作(Vision-Language-Action, VLA)模型的发展成为机器人动作建模研究的重要方向。这类模型通常是在大规模预训练的多模态大语言模型(Multimodal Large Language Models, MLLMs)基础上,添加一个动作输出头或专门的动作模块,以实现对动作的生成。MLLMs 在感知和决策方面表现出色,使得 VLA 模型在多种机器人任务中展现出良好的泛化能力。然而,这些模型存在一个显著的局限性:它们往往缺乏对动作本身的深入理解。
2025-07-11 00:30:00
37
原创 目标检测YOLO实战应用案例100讲-交通目标数据集构建及高性能检测算法研究与应用(下)
针对检测精度较低的事件, 本文系统需要进一步丰富样本,提高目标的检测精度,在此基础上进一步优化判断逻辑, 避免误检漏检的情况发生。接下来对系统中的检测模块及存储模块功能进行测试,在正确载入视频数据后,点 击开始按钮即开始进行检测及存储任务,单相机图像目标检测测试结果如图5.8所示, 在多路视频接入的情况下也能正确的完成目标检测任务,将检测结果实时存储到数据库 中,并将结果正确的显示在图像上,接入12路监控视频的多相机图像目标检测测试结 果及接入16路监控视频的多相机图像目标检测测试结果如图5.9所示。
2025-07-10 00:30:00
34
原创 MATLAB算法实战应用案例精讲-【自动驾驶】VLM多模态人工智能模型
VLM(Visual Language Model)是多模态人工智能模型,融合视觉与语言处理能力,可理解并生成与视觉内容相关的自然语言。是自动驾驶领域从2024年开始就比较火的一个关注方向,很多国内外高校开展了基于VLM的端到端自动驾驶算法的研究,车企也有引用VLM实现自动驾驶功能增强的量产级落地方案。那么VLM模型和怎么选,不同的模型又怎样的特征和性能。能准确、多维度的理解交通场景、物体、意图;视觉与语言特征的自然映射,有海量图-文数据对的训练基础;适合车载硬件部署,满足实时性的要求。
2025-07-09 00:30:00
22
原创 目标检测YOLO实战应用案例100讲-全新YOLOv13发布内容解读
研究问题:目标检测作为计算机视觉领域的核心任务之一,需要在最小延迟下实现对图像中物体的定位与分类。然而,现有的YOLO系列模型(如YOLO11及之前的版本)主要依赖卷积架构进行局部信息聚合,而YOLOv12虽然引入了基于区域的自注意力机制,但仍受限于成对像素相关性的建模能力,无法捕捉全局多层次高阶相关性,在复杂场景中表现存在瓶颈。因此,如何突破这些限制以提升检测精度和鲁棒性,成为亟待解决的问题。
2025-07-05 00:30:00
38
原创 MATLAB算法实战应用案例精讲-【数模应用】模糊综合评价法(附MATLAB、R语言和python代码实现)
模糊综合评价是一种综合评价方法,其涉及到4个关键术语名词,分别是:指标项、评语、权重判断矩阵R、权重向量矩阵A,分别如下说明:指标项:比如对于Iphone手机在3个方面的满意度,价格满意度、样式满意度和IOS系统满意度;评语:指标项的‘选项’,比如非常满意,满意,一般,不满意等;模糊综合评价即用来判断最终到底应该属于那个评语项;权重判断矩阵R:指标项及各评语的选择频数(或者比例),即需要上传的原始数据;权重向量矩阵A。
2025-07-03 00:30:00
58
原创 MATLAB基础应用精讲-【自动驾驶】RS(Reeds-Shepp)路径规划算法(附MATLAB、C++和python代码实现)
Reeds-Shepp路径规划算法是一种经典的路径规划算法,用于在二维空间中规划车辆从一个点到另一个点的最短路径。该算法特别适用于无人车、自动驾驶车辆等场景,其中车辆的运动被限制为仅沿着直线或圆弧行驶。
2025-07-03 00:30:00
54
原创 MATLAB基础应用精讲-【数模应用】熵值法(附MATLAB、R语言和python代码实现)
熵是信息理论中的概念,原本是用来衡量系统的无序程度,现在也可以用于度量数据所提供的有效信息。熵值法就是根据各指标传输给决策者的信息量的大小来确定指标权数的方法。某项评价指标的差异越大,熵值越小,该指标所携带的信息越多,相应权重越大。
2025-07-01 00:30:00
56
原创 计算机杂谈系列精讲100篇-【人工智能】Deepseek使用技巧解析(二)
阿布慌慌张张捡起松果盖住碎片。: “请模仿王勃的文风,写一篇关于王星女友机智勇敢用心的赋,用来小红书上面炫技,希望重点放在模仿王勃的篇文上,重点是让我本人的文采装逼,在小红书获得一个亿的赞,但担心别人看不懂太晦涩了……“请模仿刘慈欣的文风,写一篇关于未来城市的科幻文章,重点描述城市的建筑、交通和生活方式,希望文章具有强烈的科幻色彩和未来感,但担心文章过于晦涩难懂。“请写一篇关于中日文化交流的文章,重点描述两国文化的独特性和共通性,希望文章能够促进两国人民的相互理解和友谊,但担心文章过于学术化,缺乏趣味性。
2025-06-29 00:30:00
45
原创 MATLAB基础应用精讲-【数模应用】模糊综合评价法(附MATLAB、R语言和python代码实现)
模糊集合理论的概念于1965年由美国自动控制专家查德教授提出,用以表达事物的不确定性。模糊综合评价法是一种基于模糊数学的综合评价方法。该综合评价法根据模糊数学的隶属度理论把定性评价转化为定量评价,即用模糊数学对受到多种因素制约的事物或对象做出一个总体的评价。它具有结果清晰,系统性强的特点,能较好地解决模糊的、难以量化的问题,适合各种非确定性问题的解决。评价者从诸因素出发,参照有关信息, 根据其判断对复杂问题分别作出“大、中、 小”;“高、中、低”;“优、良、可、 劣”;
2025-06-29 00:30:00
22
原创 MATLAB算法实战应用案例精讲-【数模应用】熵值法(附MATLAB、R语言和python代码实现)
熵值法是指用来判断某个指标的离散程度的数学方法。离散程度越大,该指标对综合评价的影响越大。可以用熵值判断某个指标的离散程度。在信息论中,熵是对不确定性的一种度量。信息量越大,不确定性就越小,熵也就越小;信息量越小,不确定性越大,熵也越大。根据熵的特性,我们可以通过计算熵值来判断一个事件的随机性及无序程度,也可以用熵值来判断某个指标的离散程度,指标的离散程度越大,该指标对综合评价的影响越大。因此,可根据各项指标的变异程度,利用信息熵这个工具,计算出各个指标的权重,为多指标综合评价提供依据。
2025-06-28 00:30:00
42
原创 目标检测YOLO实战应用案例100讲-基于深度学习的道路场景轻量级目标检测(续)
数据集准备推荐使用KITTI3或RTTS(雾天场景)标注工具:LabelImg/Roboflow(YOLO格式)YOLOv8微调SSD迁移学习from torchvision.models.detection import SSD # 修改分类头(适配自定义类别数) model = SSD(num_classes=10, backbone='mobilenet_v3')边缘部署优化TensorRT加速(Jetson平台)
2025-06-25 00:30:00
46
原创 计算机杂谈系列精讲100篇-【人工智能】Deepseek使用技巧解析(一)
Deepseek是什么?现在最火的科技话题是Ai,而Ai圈最火的话题毫无疑问是Deepseek。很多人说Deepseek是名不见经传的小公司,突然闯入这个赛道,这是不对的。其实相当长的一段时间里,Deepseek都是国内最强的大模型之一,基本和阿里巴巴的Qwen平分天下。而最近他们更是势如破竹,新发布的大模型DeepSeek-R1堪称惊艳,在各种测试中都名列前茅,有些应用场景甚至可以击败Openai-o1。这还不只是一个国产Ai大模型成功的故事。。
2025-06-25 00:30:00
40
原创 MATLAB基础应用精讲-【数模应用】层次分析法(AHP)(附MATLAB和python代码实现)
层次分析法,简称AHP,是指将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。该方法是美国运筹学家匹兹堡大学教授萨蒂于20世纪70年代初,在为美国国防部研究"根据各个工业部门对国家福利的贡献大小而进行电力分配"课题时,应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法。层次分析法(Analytic Hierarchy Process,AHP)这是一种定性和定量相结合的、系统的、层次化的分析方法。
2025-06-22 00:30:00
106
原创 目标检测YOLO实战应用案例100讲-基于深度学习的道路场景轻量级目标检测
近年来,我国国民拥有汽车数目呈现快速上升的趋势,截至2021年底,全国机 动车保有量达3.95亿辆。机动车给人们的出行带来了极大便利,但日益拥挤的交通状况和频繁发生的交通事故也逐渐成为了人们出行的难题。在越来越复杂的交通环境下人们常常需要根据自己的经验选择合适的出行路线 以及面对道路上的各种突发状况,即使是经验丰富的驾驶员依旧会遇到各种不可预知 的危险。随着大数据、人工智能等计算机技术的发展,智慧城市、自动驾驶等技术手 段为缓解交通压力以及交通安全问题提供了新的解决办法[1]。
2025-06-20 00:30:00
59
原创 MATLAB基础应用精讲-【数模应用】模糊层次分析法(FAHP)(附MATLAB、python和R语言代码实现)
模糊层次分析法(FAHP)及计算过程层次分析法(AHP)是20世纪70年代美国运筹学T.L. Saaty教授提出的一种定性与定量相结合的系统分析方法。该方法对于量化评价指标,选择最优方案提供了依据,并得到了广泛的应用。然而, AHP存在如下方面的缺陷:检验判断矩阵是否一致非常困难,且检验判断矩阵是否具有一致性的标准CR<0. 1缺乏科学依据;判断矩阵的一致性与人类思维的一致性有显著差异。
2025-06-18 00:30:00
50
原创 MATLAB算法实战应用案例精讲-【数模应用】AHP层次分析法 (附MATLAB、R语言和python代码实现)(二)
层次分析法(AHP)是美国运筹学家萨蒂于上世纪70年代初,为美国国防部研究“根据各个工业部门对国家福利的贡献大小而进行电力分配”课题时,应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法。层次分析法是一种解决多目标的复杂问题的定性与定量相结合的决策分析方法。该方法将定量分析与定性分析结合起来,用决策者的经验判断各衡量目标之间能否实现的标准之间的相对重要程度,并合理地给出每个决策方案的每个标准的权数,利用权数求出各方案的优劣次序,比较有效地应用于那些难以用定量方法解决的课题。
2025-06-17 00:30:00
47
原创 MATLAB算法实战应用案例精讲-【数模应用】AHP层次分析法 (附MATLAB和python代码实现)
层 次 分 析 法, 即Analytic Hierarchy Process(AHP) , 是美国运筹学家 Saaty 于 20 世纪 70 年代初 期提出的一种主观赋值评价方法。层次分析法将与决策有关的元素分解成目标、 准则、方案等多个层次, 并在此基础上进行定性和定量分析, 是一种系统、简便、灵活有效的决策方法。指标定权给指标制定权重,打个比方,例如选择旅游地这个决策,可能一般我们由以下5个因素组成,但是每个人(主观)对因素的重视程度不一,ahp可以实现在无需搜集数据的情况下,给这些指标制定权重。
2025-06-16 10:17:25
71
原创 MATLAB基础应用精讲-【数模应用】DCA曲线(附MATLAB、python和R语言代码实现)
在临床预测模型领域,DCA曲线作为一种评估工具,显得尤为重要。它不同于传统的ROC曲线分析,后者主要关注模型的准确性,并通过计算曲线下面积(AUC)来衡量,AUC值越大,准确性越高。然而,ROC曲线分析在选取临界值时,可能会面临假阳性和/或假阴性的问题。DCA曲线则巧妙地避开了这些问题,它直接计算净收益,旨在最大化净收益。在DCA曲线图中,横坐标代表阈概率,而纵坐标则是净获益率(net benefit, NB)。
2025-06-12 00:30:00
71
原创 目标检测YOLO实战应用案例100讲-面向驾校场景带深度信息目标检测(下)
本章将对目标检测算法部分展开深入研究,重点选择并改进了目前在各种开发 板上速度与精度都表现优异的一阶段目标检测算法SSD。改进分为两个主要部分, 一是对神经网络部分加入了现场画面进行域适应训练,以及对于计算量的优化设 计,从神经网络部分提升目标检测的精度和推理速度。二是将目标检测算法检测出 的目标送入ECO跟踪算法中,在短时间内快速预测其目标在下一帧的位置信息, 以便优化目标检测的实时性。同时,由于跟踪过程中对目标检测具有连续性,因此 该方式在目标检测算法的漏检问题上也有一定的缓解。
2025-06-11 00:30:00
80
原创 目标检测YOLO实战应用案例100讲-面向驾校场景带深度信息目标检测(中)
由相机成像原理中可知,相机所成图像会在转换过程中丢失掉世界真实目标 的深度信息,即距离信息。所以目前在单个普通相机摄像头的条件下,一般为利用 多视角下图像中的匹配目标来获取相机的转换矩阵参数或者使用不同视角下目标 坐标转换矩阵,将目标的像素点坐标转化为三维坐标或者转换成特殊视角下的坐 标如俯视视角。从而获取距离信息,如图3-1所示。
2025-06-10 00:30:00
59
原创 目标检测YOLO实战应用案例100讲-面向驾校场景带深度信息目标检测
本章将对测距与目标检测及跟踪相关算法的基本原理与概念加以阐述,首先 介绍测距算法中相机的成像原理,以及运动结构恢复算法SFM(Structrue From Motion)的原理以及卡尔曼滤波原理。其次是,对SSD上目标检测框的生成原理 进行介绍,域适应方法概念的介绍以及ECO跟踪算法的概述。目标检测算法主要有两种方式的检测方法,其一是精度较低但速度较快的一阶 段目标检测计算,其二是准确性较高而速率缓慢的二阶段目标检测计算。
2025-06-08 00:30:00
79
原创 MATLAB算法实战应用案例精讲-【数模应用】DCA曲线(附MATLAB、python和R语言代码实现)
决策曲线分析法(Decision Curve Analysis,DCA)可对风险和获益情况进行综合评估,以判断临床决策是否可行,通俗地讲即DCA曲线可辅助临床医生判断临床决策是否会‘利大于弊’。
2025-06-07 00:30:00
102
原创 MATLAB基础应用精讲-【数模应用】校准曲线(附MATLAB、python和R语言代码实现)
校准曲线是用于描述待测物质的浓度或量与相应的测量仪器的响应量或其他指示量之间定量关系的曲线,包括工作曲线和标准曲线。如果基体效应对分析方法至关重要时,应使用含有与实际样品类似基体的标准溶液系列进行校准曲线的绘制。通常,一条校准曲线须配制包括零浓度在内六个以上的标准系列浓度点的信号值。用扣除空白信号值的数据为纵坐标,浓度(或含量)为横坐标,在坐标纸上植点,即为散点图,通过各点绘出一条与各点距离最小的直线,即可得出校准曲线图。在得到满足要求的散点图后,进行线性回归处理,得曲线y=bx+a。
2025-06-04 00:30:00
87
原创 MATLAB算法实战应用案例精讲-【数模应用】校准曲线(附MATLAB、python和R语言代码实现)
模型校准曲线(Calibration Curve),也称为可靠性曲线(Reliability Curve)或概率校准曲线(Probability Calibration Curve),是一种评估分类模型输出概率准确性的图形工具。它可以帮助我们理解模型的预测概率是否与实际标签的分布一致。校准曲线通常包括以下步骤:计算模型预测概率:对于测试集中的每个样本,模型会输出一个概率值,表示样本属于正类的概率。将数据分桶:将这些概率值分成若干个等宽的桶(例如10个桶),每个桶中的样本具有相似的预测概率。
2025-06-03 00:30:00
84
原创 MATLAB算法实战应用案例精讲-【数模应用】NRI和IDI指标(附MATLAB、python和R语言代码实现)
净重新分类指数(NRI)和综合判别改善指数(IDI)是用于评估新的预测模型相对于基准模型的改进程度的指标,通常用于逻辑回归模型的评估。净重新分类指数(NRI):NRI是一种指标,用于衡量新的预测模型相对于基准模型在重新分类中的改进程度。NRI的计算基于模型对事件和非事件的分类情况,通过比较新模型和基准模型的分类结果,可以评估新模型相对于基准模型的准确性改进情况。综合判别改善指数(IDI):IDI是另一种用于评估新模型相对于基准模型改进程度的指标。
2025-06-02 00:30:00
99
原创 MATLAB基础应用精讲-【数模应用】Deming 回归(附MATLAB、python和R语言代码实现)
使用正交回归(也叫 Deming 回归)可以确定两种仪器或两种方法能否提供相似的测量结果。正交回归检查两个连续变量(一个响应变量 (Y) 和一个预测变量 (X))之间的线性关系。与简单线性回归(最小二乘回归)不同,正交回归中的响应和预测变量均包含测量误差。在简单回归中,只有响应变量包含测量误差。当这两个变量包含测量误差时,如果您使用简单回归确定可比较性,则结果取决于计算过程假设哪个变量没有测量误差。正交回归解决了此问题,因此,变量的角色对结果的影响很小。
2025-05-31 00:30:00
114
原创 MATLAB基础应用精讲-【大模型】模型上下文协议MCP(二)
是一个开放协议,旨在实现 LLM 应用与外部数据源和工具之间的无缝集成。无论您是构建 AI 驱动的 IDE、增强聊天界面,还是创建自定义 AI 工作流,MCP 都提供了一种标准化的方式来连接 LLM 与外部世界。简单来说,MCP 是一种客户端-服务器架构的协议,允许 LLM 应用程序(如 Claude、各种 IDE 等)通过标准化的接口访问外部数据和功能。这解决了 LLM 在实际应用中常见的一些痛点:LLM 无法直接访问实时数据(如天气、股票行情等)
2025-05-27 00:30:00
110
原创 MATLAB算法实战应用案例精讲-【大模型】模型上下文协议MCP(二)
MCP,全称为Model Context Protocol,即模型上下文协议。它诞生于2024年11月25日,由Anthropic正式发布。简单来说,MCP就是AI世界里的“通用语言”和“标准接口”。想象一下,在AI应用开发过程中,我们常常需要将各种数据源(如本地文件、数据库)、工具(数据分析工具、文件处理工具等)与AI模型连接起来。但此前,不同的连接方式缺乏统一标准,就像不同形状的插头无法通用。而MCP的出现,定义了应用程序和AI模型之间交换上下文信息的标准方式,成为了一个中间协议层。
2025-05-26 00:30:00
111
原创 MATLAB基础应用精讲-【大模型】模型上下文协议MCP
MCP和Function Calling在大语言模型(LLM)与外部工具或数据源交互方面各有优势。MCP作为一种开放标准协议,提供了统一的接口和流程,支持工具发现、调用执行、统一接口、双向通信和上下文管理,适用于复杂场景下的多工具协调与上下文管理。而Function Calling则作为模型内部的功能扩展,是LLM的一种能力,允许模型根据用户输入生成结构化的函数调用指令,从而与外部工具或API交互。Function Calling能够快速实现简单场景下的函数调用任务。
2025-05-25 00:30:00
123
原创 MATLAB算法实战应用案例精讲-【大模型】模型上下文协议MCP
MCP(Multimodal Context and Tool Use Protocol),即「多模态上下文与工具使用协议」,是 Anthropic 为 Claude 系列模型设计的一套统一、结构化的工具调用和上下文管理标准。从字面上看,它像是 function calling 的升级版,但本质上,它意图解决三个核心痛点:工具调用格式碎片化,难以跨模型复用上下文数据缺乏结构化描述,模型理解能力受限Agent 系统调用链路复杂,难以维护与扩展。
2025-05-24 00:30:00
132
目标检测YOLO实战应用案例100讲-3D Lidar MOT 激光雷达点云 感知 多目标追踪
2024-04-19
MATLAB算法实战应用案例精讲-优化算法正切搜索算法(FTTA)(附MATLAB代码实现)
2024-03-05
MATLAB算法实战应用案例精讲-【智能优化算法】基于人类行为的优化算法(HBBO)(附MATLAB源代码)
2023-12-12
MATLAB算法实战应用案例精讲-【数模应用】-第十一届MathorCup数学应用挑战赛赛题(包含赛题和数据).rar
2025-02-27
MATLAB算法实战应用案例精讲-【数模应用】-第十三届MathorCup数学应用挑战赛赛题(包含赛题和数据).rar
2025-02-27
MATLAB算法实战应用案例精讲-【数模应用】-第十四届MathorCup数学应用挑战赛赛题(包含赛题和数据).rar
2025-02-27
MATLAB算法实战应用案例精讲-【数模应用】-第十二届MathorCup数学应用挑战赛赛题(包含赛题和数据).rar
2025-02-27
MATLAB基础应用精讲-数模应用DTMF信号分析与仿真(附MATLAB GUI源码)
2025-02-05
MATLAB基础应用精讲-数模应用基于BP神经网络的交通流量预测(附数据及MATLAB源码)
2025-02-05
MATLAB基础应用精讲-【智能优化算法】黏菌算法(SMA)(附MATLAB和python代码实现)
2025-01-10
MATLAB基础应用精讲-数模应用不确定多式联运路径优化问题(附MATLAB多种算法代码实现)
2025-01-08
MATLAB基础应用精讲-数模应用基于PCM编码QAM调制与解调仿真(附MATLAB源代码)
2024-12-20
MATLAB基础应用精讲-数模应用基于视觉感知的图像显著计算Itti算法MATLAB源代码
2024-12-16
MATLAB基础应用精讲-数模应用图像修复-Criminisi算法MATLAB代码
2024-11-21
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人