【图论学习笔记五】贪心算法

贪心算法是一种优化策略,每次都选择当前看起来最优的选项。本文探讨了活动选择问题、最小生成树问题(如Kruskal和Prim算法)、最大独立集、背包问题,并引入了Stein-lovasz定理。通过实例和证明,阐述了贪心算法在解决这些问题中的应用和局限性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

优化问题的算法通常会通过一系列的步骤,在每一个步骤通过一系列的选择。一个贪婪算法总是目前看起来最好的选择。也就是说,它做出局部最优选择,希望选择将导致全局最优的解决方案。贪心算法并不总是能得到最优解,但对于许多问题它们都能得到最优解。

活动选择问题

几个相互竞争的活动需要共同的资源,目标是在活动不发生冲突的前提下,选出最多可举办的活动数。假设我们有一个集合S=\{a_1,a_2,...a_n\}提议希望使用资源的活动,例如一次只能由一个活动使用的演讲厅。每个活动ai都有一个开始时间si和一个结束时间fi, 0\leq s_i\leq f_i<\infty。如果选择,活动ai发生在半开时间间隔[si,fi)的情况下,活动ai和aj是兼容的,间隔[si,fi)和[sj.fj]不重叠的。活动选择问题是选择相互兼容的活动的最大子集。

按开始时间最早的排序;X

按时间间隔最短的排序;X

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZoomToday

给作者倒一杯卡布奇诺

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值