
深度学习
文章平均质量分 79
Hanawh
hello world
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【深度学习】【CVPR2021】ProDA
Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation摘要intro相关工作Unsupervised domain adaptationUnsupervised representation learningLearning from noisy labels方法摘要self-training: 伪标签训练目标域伪标签的缺点: 由于源域和目标原创 2021-12-11 17:50:49 · 4219 阅读 · 0 评论 -
【深度学习】【机器学习】【朴素贝叶斯】
【朴素贝叶斯】贝叶斯定理朴素贝叶斯贝叶斯定理条件概率,即在B的条件下A发生的概率:P(A∣B)=P(AB)P(B)P(A|B)=\frac{P(AB)}{P(B)}P(A∣B)=P(B)P(AB)贝叶斯定理:P(B∣A)=P(A∣B)P(B)P(A)P(B|A)=\frac{P(A|B)P(B)}{P(A)}P(B∣A)=P(A)P(A∣B)P(B)在生活中,我们可能会更关心P(B...原创 2019-10-20 15:33:48 · 215 阅读 · 0 评论 -
【深度学习】【ICLR2019】DARTS代码解读
DARTS:DIFFERENTIABLE ARCHITECTURE SEARCH原创 2019-10-24 17:25:07 · 7596 阅读 · 6 评论 -
【深度学习】【论文阅读】YOLOv1、v2
【论文阅读】YOLO三部曲YOLOv1网络架构LossYOLOv2改进策略训练YOLOv1First, YOLO is extremely fast.Since we frame detection as a regression problem we don’t need a complex pipeline.Second, YOLO reasons globally about the ...原创 2019-10-28 15:09:25 · 509 阅读 · 0 评论 -
【深度学习】从零开始用pytorch实现YOLOv3
【目标检测】从零开始用pytorch实现YOLOv3About YOLOv3构建网络架构实现前馈传播非极大值抑制设计输入输出管道TutorialAbout YOLOv3预测框与cellYou expect each cell of the feature map to predict an object through one of it’s bounding boxes if the ...原创 2019-10-29 20:16:51 · 1384 阅读 · 0 评论 -
【深度学习】【机器学习】EM
【机器学习】EM与GMM算法EMEM参考何为隐变量?现已知班级里有50名男生和50名女生,假设男生和女生的身高各服从不同正态分布,要求估计出正态分布的参数,那我们拿到一个身高数据,并且已经知道这个身高数据是属于男生还是女生,我们就可以用所有男生的身高数据和女生的身高数据分别利用极大似然法求出参数。而现在我们不知道这条数据是属于男生还是女生,那么对于这条数据来说,就存在两个隐变量,即属于男生...原创 2019-11-03 15:38:13 · 260 阅读 · 0 评论 -
【深度学习】【机器学习】SVM
【机器学习】人脸识别—SVM实践SVMSVM原创 2019-11-16 17:57:16 · 157 阅读 · 0 评论 -
【深度学习】【ICCV2019】Gaussian YOLOv3
Gaussian YOLOv3AbstractIntroductionBackgroundGaussian YOLOv3Gaussian modelingReconstruction of loss functionUtilization of localization uncertaintyExperimental Results【ICCV2019】Gaussian YOLOv3: An Ac...原创 2019-11-25 19:14:40 · 618 阅读 · 0 评论 -
【深度学习】【CVPR2019】Auto-deeplab
【CVPR2019】Auto-deeplabAuthorsIntroductionRelated WorkCell SearchAuto-DeepLab: Hierarchical Neural Architecture Search fo...原创 2019-11-28 14:37:30 · 437 阅读 · 0 评论 -
【深度学习】【机器学习】【目标跟踪】基于Meanshift的目标跟踪算法
【目标跟踪】基于Meanshift的目标跟踪算法算法原理算法流程实验环境实验结果代码展示算法原理概率密度估计方法主要分为参数密度估计和无参密度估计,参数密度估计方法要求特征空间服从一个已知的概率密度函数,在实际的应用中难以达到;而无参密度估计对先验知识要求少,完全依靠训练数据进行估计,并且可以用于任意形状的密度估计,常用的无参密度估计方法有:直方图法、最近邻法和核密度估计法。算法流程实验...原创 2019-12-08 15:01:25 · 1190 阅读 · 1 评论 -
【深度学习】【ICCV2019】FCOS
【ICCV2019】FCOS原创 2019-12-12 10:20:40 · 584 阅读 · 0 评论 -
【深度学习】【ECCV2018】CornerNet及代码解读
【ECCV2018】CornerNetConerNetDetecting CornersConerNetDetecting Cornersycij=e−x2+y22σ2y_{cij}=e^{-\frac{x^2+y^2}{2\sigma ^2}}ycij=e−2σ2x2+y2x,yx,yx,y是正样本的位置坐标,其中:σ=13r,r=IoUgt,bbox>0.3\sigma =...原创 2019-12-20 21:54:27 · 2992 阅读 · 1 评论 -
【深度学习】【实例分割】SOLO:Segmenting Objects by Locations
【实例分割】SOLO:Segmenting Objects by Locations相关工作模型结构实例分割主要有两大类别,而这两大类方法都不够直接。自上而下即detect-then-segment:太依赖于目标检测的准确率自下而上:为每个像素学习一个嵌入向量(有点像Cornernet),该方法依赖于每个像素的嵌入学习和分组后处理。出发点:一张图片中的实例基本的不同是什么?要么具有不同...原创 2020-01-06 18:22:20 · 10483 阅读 · 8 评论 -
【深度学习】【YOLACT】代码解读二
【YOLACT】代码解读代码运行验证处理图片训练代码运行根据github所给指导一步一步进行,如果曾经下载好coco数据集,在data/config.py108行以下修改数据集的目录,并且在run_coco_eval.py16行修改验证集annotation文件的路径。验证有以下三种评估方式:firstpython eval.py --trained_model=weights/yol...原创 2020-01-14 12:21:22 · 3758 阅读 · 0 评论 -
【深度学习】【CVPR 2016】Weakly Supervised Deep Detection Networks
【CVPR 2016】WSDDN先学习一下SPP(spatial pyramid pooling),如下图所示,在R-CNN中,进入卷积层之前必须对图片进行crop或者warp以保证大小相同(因为有全连接层),但是这样不仅会影响识别精度,而且检测的速度也很慢,因为原始图片经过crop或者warp后得到的图片会重复使用卷积网络计算feature maps,但是SPP只计算一次原始图像的featur...原创 2020-02-11 23:56:28 · 801 阅读 · 1 评论 -
【深度学习】【CVPR2019】弱监督目标检测C-MIL
【CVPR2019】C-MIL: Continuation Multiple Instance Learning for Weakly Supervised Object Detection原创 2020-02-18 19:38:50 · 1142 阅读 · 0 评论 -
【深度学习】【YOLACT】代码解读一
【YOLACT】代码解读一代码运行验证处理图片训练代码解读网络架构代码运行根据github所给指导一步一步进行,如果曾经下载好coco数据集,在data/config.py108行以下修改数据集的目录,并且在run_coco_eval.py16行修改验证集annotation文件的路径。验证有以下三种评估方式:firstpython eval.py --trained_model=we...原创 2020-02-19 21:06:59 · 5226 阅读 · 12 评论 -
【深度学习】【CVPR 2019】GIoU
【CVPR 2019】Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression相关工作出发点:IoU指标在评估阶段经常使用,但是训练的时候经常是直接计算坐标的L1、L2范数,引用文章中所说"The optimal objective for a metric is the metric...原创 2020-02-26 18:31:20 · 248 阅读 · 0 评论 -
【深度学习】【mmdetection】FCOS代码阅读一
【mmdetection】FCOS运行准备工作修改config模型训练运行准备工作此时mmdetection的版本为v1.1.0,根据INSTALL先创建虚拟环境并且下载相关依赖,数据为coco2017。# 创建虚拟环境conda create -n open-mmlab python=3.7 -yconda activate open-mmlab# 记得使用‘nvcc -V’查看...原创 2020-02-28 20:36:26 · 3214 阅读 · 12 评论 -
【深度学习】【mmdetection】FCOS代码阅读二
【mmdetection】FCOS损失函数损失函数下面我们再来看看函数里面定义的损失函数。 @force_fp32(apply_to=('cls_scores', 'bbox_preds', 'centernesses')) def loss(self, cls_scores, bbox_preds, ...原创 2020-03-01 18:32:22 · 1802 阅读 · 4 评论 -
【深度学习】【mmdetection】PolarMask
【mmdetection】PolarMask代码运行官方代码:https://github.com/xieenze/PolarMask官方论文解读:https://zhuanlan.zhihu.com/p/84890413代码运行创建环境conda create -n open-mmlab python=3.7 -yconda activate open-mmlabconda ins...原创 2020-03-05 13:56:13 · 3602 阅读 · 22 评论 -
【深度学习】【CVPR2019 oral】Structured Knowledge Distillation for Semantic Segmentation
【cvpr2019 oral】Structured Knowledge Distillation for Semantic SegmentationKDIntroApproachStructured Knowledge DistillationOptimization实验KD知识蒸馏是什么?可以参考https://zhuanlan.zhihu.com/p/90049906,知识蒸馏是一种将知识...原创 2020-03-27 18:06:25 · 619 阅读 · 0 评论 -
【深度学习】【ICCV2019】TensorMask:A Foundation for Dense Object Segmentation
【ICCV2019】TensorMask:A Foundation for Dense Object Segmentation概要结构实验概要目前(2019年前)基于密集网格式的滑动窗口目标检测器很流行也很成功(SSD,RetinaNet等),但是实例分割仍是由先检测再分割的Mask R-CNNR-CNN主导。本文提出了一个4D张量来代表预测的mask(其实就是将通道表示成一个固定大小区域的...原创 2020-04-16 11:49:07 · 451 阅读 · 1 评论 -
【深度学习】【mmdetection】SOLO官方代码 vs 复现版本
【mmdetection】代码对比在这里主要对比一下solo的官方代码和复现版本。官方代码 https://github.com/WXinlong/SOLO复现版本 https://github.com/Epiphqny/SOLOscale_ranges表示不同官方代码表示((1, 96), (48, 192), (96, 384), (192, 768), (384, 2048))...原创 2020-04-16 16:45:34 · 2531 阅读 · 1 评论 -
【深度学习】【CVPR2020 Oral】ATSS
【CVPR2020】Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample Selection摘要Difference Analysis实验设置去除不一致本质区别 —— 如何定义正负样本ATSS实验摘要anchor-free的目标检测方法受利于FPN和Focal l...原创 2020-04-16 23:27:21 · 640 阅读 · 0 评论 -
【深度学习】【CVPR2019】Feature Selective Anchor-Free Module for Single-Shot Object Detection(FSAF)
@[TOC](【CVPR2019】Feature Selective Anchor-Free Module for Single-Shot Object Detection(FSAF))论文提出了一个模块来解决基于anchor方法的两个限制:heuristic-guided feature selectionoverlap-based anchor sampling啥意思呢?对于下面这...原创 2020-04-28 13:06:07 · 343 阅读 · 0 评论 -
【深度学习】【CVPR2020】Revisiting the Sibling Head in Object Detector(TSD)
【CVPR2020】TSD简要TSDTask-aware spatial disentanglement learningTSD : task-aware spatial disentanglement简要该论文提出的方法取得OpenImage Object Detection Challenge 2019 冠军。数据集OpenImages Challenge 2019 目标检测数据...原创 2020-05-07 17:28:38 · 2440 阅读 · 0 评论 -
【深度学习】【CVPR2019】FoveaBox: Beyond Anchor-based Object Detector
FoveaBox: Beyond Anchor-based Object Detector欢迎使用Markdown编辑器新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导入欢迎使用Markdown编辑器你好! 这是你第一次使原创 2020-05-23 12:06:54 · 233 阅读 · 0 评论 -
【深度学习】【Transformer】
【Transformer】主要是学习illustrated-transformer和李宏毅老师的transformer讲解。原创 2020-06-09 18:37:18 · 244 阅读 · 0 评论 -
【深度学习】【DETR】End-to-End Object Detection with Transformers
【论文阅读】End-to-End Object Detection with Transformers原创 2020-06-11 20:16:46 · 3155 阅读 · 5 评论 -
【深度学习】【机器学习】Logistic Regression
Logistic RegressionModel决策边界Loss厦门大学机器学习课程笔记Modelsigmoid函数: sig(η)=11+e−ηsig(\eta)=\frac{1}{1+e^{- \eta}}sig(η)=1+e−η1值域:(0,1)一阶导:sig(η)(1−sig(η))sig(\eta)(1-sig(\eta))sig(η)(1−sig(η))η=wTx\eta = w^Txη=wTx决策边界P(y=1∣x)P(y=0∣x)>1?\frac{P(y=1|x)}{原创 2020-08-26 21:35:18 · 148 阅读 · 0 评论 -
【深度学习】【ECCV2020】Improving One-stage Visual Grounding by Recursive Sub-query Construction
【ECCV2020】Improving One-stage Visual Grounding by Recursive Sub-query ConstructionIntroduction代码链接发现问题:直接用bert的embedding向量、或者LSTM的隐层状态会忽略query的信息,尤其在query比较长、复杂的情况下解决思路:提出一个递归sub-query构造框架,在图像和query中进行多次推理,从而减少推理混淆的情况效果:分别在ReferItGame, RefCOCO, RefCOC原创 2021-01-20 00:52:04 · 544 阅读 · 0 评论 -
【深度学习】【CVPR2019 oral】Weakly Supervised Learning of Instance Segmentation with Inter-pixel
【CVPR2019 oral】Weakly Supervised Learning of Instance Segmentation with Inter-pixelAbstractStepAbstract监督信息 : 分类信息模型框架 :如下图所示首先从分类模型的注意力图中找出一定区域,然后生成实例的边界区域(主要利用IRNet可以估计各个实例的粗略区域并检测不同类之间的边界)Step训练CAM : Class Attention Map也就是训练一个分类网络,分类网络是resnet5原创 2021-07-18 18:12:34 · 424 阅读 · 0 评论 -
【深度学习】CenterNet-better-plus代码解读
CenterNet-better-plus代码解读CenterNet-better-plus代码解读detectron2架构gt生成部分CenterNet-better-plus代码解读源代码 https://github.com/lbin/CenterNet-better-plusdetectron2架构gt生成部分centernet/centernet_gt.py首先看一下经过处理的inputsinstance类里面包含了图片的gt_bbox、gt_classes等信息import n原创 2021-07-18 18:14:10 · 502 阅读 · 0 评论 -
【深度学习】【Atlas 200DK】YOLOv3和YOLOv5部署
【Atlas 200DK】YOLOv3和YOLOv5部署数据集介绍开发板环境搭建YOLOv3的部署模型训练转换服务器上的结果开发板上的结果python部署c++部署YOLOv5的部署模型训练转换服务器上的结果开发板上的结果遇到的问题数据集介绍无论什么数据集开发版移植的流程是差不多的,我们使用的数据集是NWPU VHR-10 Dataset,这是由西工大标注的航天遥感目标检测数据集,该数据集有650张包含目标的图像和150张背景图像,共计800张,目标种类包括飞机、船舰、油罐、棒球场、网球场、篮球场、田径原创 2020-12-01 19:32:23 · 8932 阅读 · 28 评论 -
【深度学习】DOTA-v1.5遥感目标检测数据集
利用DOTA-v1.5训练YOLOv5About数据数据集工具包图片可视化图片切割About数据数据集官网 :https://captain-whu.github.io/DOAI2019/dataset.html数据集工具包 :https://github.com/CAPTAIN-WHU/DOTA_devkitDOTA-v1.5数据集一共有16个类别,包含40万个带注释的对象实例。训练集:1141张验证集:458张16个类别分别是:飞机,轮船,储罐,棒球场,网球场,篮球场,地面跑道,港口,桥梁原创 2021-07-18 18:17:39 · 6568 阅读 · 3 评论 -
【深度学习】【目标检测】指标计算
def ap_per_class(tp, conf, pred_cls, target_cls): """ Compute the average precision, given the recall and precision curves. Source: https://github.com/rafaelpadilla/Object-Detection-Metrics. # Arguments tp: True positives (nparray, n原创 2020-09-11 13:10:20 · 645 阅读 · 0 评论 -
【深度学习】【目标检测】数据集
【目标检测】数据集VOC形式AnnotationVOC形式Annotation里面是xml文件,包含了每张图片的标注信息。JPEGImage包含了所有的图片。ImageSets里有四个文件夹,但是常用的是Main文件夹,里面有对训练、验证和测试集的划分。下载VOC2007数据集# 下载训练和验证集curl -LO http://host.robots.ox.ac.uk/pas...原创 2019-12-29 18:25:58 · 587 阅读 · 0 评论 -
【深度学习】【目标检测】NMS、Soft-NMS、fast-NMS
【目标检测】NMS、Soft-NMS、fast-NMSNMSNMS原创 2019-12-05 19:49:07 · 2807 阅读 · 0 评论 -
【深度学习】【轻量型网络】MobileNet、ShuffleNet
【轻量型网络】MobileNet、ShuffleNetMobileNetMobileNet v1MobileNet v2Channel ShuffleShuffleNet v2高效模型设计准则MobileNet提出顺序:MobileNet v1 -> ShuffleNet v1 -> MobileNet v2 -> ShuffleNet v2组卷积:实质就是将卷积分为gg...原创 2019-10-18 19:21:56 · 817 阅读 · 0 评论