RuntimeError: one of the variables needed for gradient computation has been modified by an inplace o

在运行PyTorch模型时遇到一个错误:`RuntimeError: oneofthevariablesneededforgradientcomputationhasbeenmodifiedbyaninplaceoperation`。原因是对softmax输出进行了就地修改。为解决此问题,需要在修改softmax输出之前先将其detach(),以防止影响梯度计算。修复方法是将涉及softmax的部分改为:`lu_similarity=lu_similarity.detach()`,然后执行`semantic_p=torch.softmax(lu_similarity,dim=1)`。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题

RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation: [torch.cuda.FloatTensor [1, 2]], which is output 0 of SoftmaxBackward, is at version 1; expected version 0 instead. Hint: enable anomaly detection to find the operation that failed to compute its gradient, with torch.autograd.set_detect_anomaly(True).

由于我对softmax输出的值就行了修改 ,出现如上报错

filter_value = float(0)
# 把大于top-k的值置于0,留下小的
indices_to_remove = semantic_p[j] > torch.topk(semantic_p[j], 1, largest=False)[0][..., -1, None
semantic_p[j][indices_to_remove] = filter_value
lu_s_similarity[j][indices_to_remove] = filter_value
s_pse_data2.append(lu_s_similarity[j])
pselabel2.append(semantic_p[j])

解决办法

对需要softmax的值就行如下操作,再进行softmax

lu_similarity = lu_similarity.detach()
semantic_p = torch.softmax(lu_similarity, dim=1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值