修路成本最低(贪心), 用Prim算法(最小生成树)
比较Dijkstra算法和Prim算法
#include<cstdio>
#define INFINITY 65535
using namespace std;
const int maxn=1001;
int dist[maxn], C[maxn][maxn], parent[maxn];
int N, M, cnt;
int findMin(){
int minn=INFINITY, index=-1;
for(int i=1; i<=N; i++){
if(dist[i]!=0&&minn>dist[i]){
minn=dist[i];
index=i;
}
}
return index;
}
void Prim(int s){
int cnt=1, Totalcost=0;
for(int i=1; i<=N; i++){
parent[i]=s; //记录父节点 (路径)
dist[i]=C[s][i];
}
parent[s]=-1;
dist[s]=0;
int v;
while(1){
v=findMin();
if(v==-1)break;
Totalcost+=dist[v];
cnt++;
dist[v]=0;//收录后dist的值要变为0,表明该结点v已被收录
for(int i=1; i<=N; i++){
if(dist[i]!=0&&C[v][i]<dist[i]){
dist[i]=C[v][i];
parent[i]=v;
}
}
}
if(cnt==N)printf("%d", Totalcost);//如果所有结点都收录完毕,则输出总费用
else printf("-1");//否则,则说明有些该图里面有回路 ,无法生成树
}
int main(){
scanf("%d%d", &N, &M);
//初始化各边
for(int i=1; i<=N; i++){
for(int j=1; j<=N; j++){
C[i][j]=INFINITY;
}
}
int a, b, c;
for(int i=1; i<=M; i++){
scanf("%d%d%d", &a, &b, &c);
C[a][b]=C[b][a]=c;
}
Prim(1);
return 0;
}