python 中 Numpy的应用 (shape,...)

这篇博客介绍了NumPy库中数组的shape属性及其使用,包括通过reshape方法改变数组形状以及利用省略号进行多维数组的索引和切片。示例展示了如何获取和修改数组的维度大小,以及如何选取特定列、行或子数组。内容涵盖了NumPy数组操作的基础知识,对于理解和操作多维数据非常有帮助。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

shape 应用

>>> x = numpy.arange(6).reshape(-1,3)
>>> x
array([[0, 1, 2],
       [3, 4, 5]])
>>> x.shape
(2, 3)
>>> x.shape[0]
2
>>> x[0].shape
(3,)

省略号应用

>>> x = numpy.arange(12).reshape(-1,4)
>>> x
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])
>>> x[...,1] # 第二列元素
array([1, 5, 9])
>>> x[1,...] # 第二行元素
array([4, 5, 6, 7])
>>> x[...,1:] # 第二列元素以及剩余元素
array([[ 1,  2,  3],
       [ 5,  6,  7],
       [ 9, 10, 11]])
>>> x[:2,...] # 第1,2行元素
array([[0, 1, 2, 3],
       [4, 5, 6, 7]])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值