【多模态】《High-Order Attention Models for Visual Question Answering》论文阅读笔记

该文章探讨了一种结合基于attention的多模态融合和基于双线性池化的融合方法在视觉问答(VQA)任务中的应用。模型结构简单而高效,整合了多种注意力机制和双线性池化技术,为多模态特征融合提供新思路。通过参考一系列相关论文,读者可以深入了解这两种融合策略如何增强VQA模型的表现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这篇文章做的是VQA。同时,这篇文章集成了基于attention的多模态融合方法和基于双线性池化的多模态融合方法,为做VQA等多模态任务提供了很好的思路。

模型比较简单,但高效。

简单之处在于模型的组件都在之前的博客中学习过,没有新的结构之类的。高效之处在于集成了基于attention的多模态融合方法和基于双线性池化的多模态融合方法。

基于attention的多模态融合方法可以参考以下几篇博客:
【多模态】《Stacked Attention Networks for Image Question Answering》论文阅读笔记
【多模态】《Where To Look: Focus Regions for Visual Question
Answering》论文阅读笔记

【多模态】《Show, Attend and Tell: Neural Image Caption Generation with Visual Attention》论文阅读笔记
【多模态】《Visual7W: Grounded Question Answering in
Image

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值