【PyTorch】实现迁移学习框架DANN

本文详细介绍了如何使用PyTorch实现经典的迁移学习框架DANN,重点在于代码实现和关键语句的解释。内容涵盖数据导入、训练函数、测试函数、模型加载、优化器设置等方面,并探讨了如torch.manual_seed、nn.CrossEntropyLoss、.detach()等关键函数的作用和用法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

DANN(Domain Adversarial Neural Network)是最经典的迁移网络框架之一,在2016年被提出。目前网络上有很多关于DANN的介绍,比如知乎:戴璞微说AI的博文等。因此,在此文中,该网络的架构不再赘述,而将重点置于如何利用PyTorch深度学习框架实现DANN上。另外,在代码中也会对PyTorch中的关键语句进行详细解释,以便读者学习。

代码实现

1、导入数据库

import models  # 导入DANN网络模型,包含特征提取器、类别分类器和领域分类器

import torch
import torch.nn as nn
import torch
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

cofisher

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值