bug排除

本文探讨了在Python中使用PyTorch时遇到的CUDA相关运行时错误,并提供了两种常见问题的解决方案:一是环境配置问题导致的CUDA版本不兼容;二是代码中GPU索引设置超出显卡数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

RuntimeError: Attempting to deserialize object on a CUDA device but torch.cuda.is_available() is False. If you are running on a CPU-only machine, please use torch.load with map_location=torch.device(‘cpu’) to map your storages to the CPU.

记录具体问题,如下图所示

在这里插入图片描述
出现上述错误有两种情况,分别如下:

  • 环境问题
    python中安装的pytorch对应的CUDA版本和服务器上的显卡驱动对应的CUDA版本不兼容,显卡驱动对应的CUDA版本应当>=pytorch对应的CUDA版本。

  • 代码设置问题
    代码中GPU索引的设置不正确(超出了显卡的个数)

os.environ["CUDA_VISIBLE_DEVICES"] = "3"
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值