
LLM_Project
文章平均质量分 91
LLM项目Demo与说明
陈纬度啊
主要从事AI框架开发、应用开发、行业方案设计工作;
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
P9-QA 数据集生成工具
本项目开发了一个基于Qwen3语言模型的QA数据集生成工具,主要功能包括:1)支持处理TXT、PDF和DOCX格式的文件,自动提取文本内容并分割为语义完整的句子;2)利用Qwen3模型生成自然的问题,并自动补充主语以提高问题清晰度;3)采用检索增强生成(RAG)流程,结合Chroma向量数据库和HuggingFace嵌入模型生成准确回答;4)提供Gradio交互界面,支持文件上传、QA对可视化展示和JSON格式数据集下载。该工具实现了从文档预处理到问答数据集生成的全流程自动化,为构建高质量问答数据集提供了便原创 2025-06-09 15:26:05 · 643 阅读 · 0 评论 -
P8-大模型微调
微调(Fine-tuning)是指在大规模预训练模型的基础上,使用特定任务或领域的数据对模型进行进一步训练,以提升模型在该任务或领域上的性能。与预训练阶段相比,微调通常使用较小的数据集和较少的训练步数。加载预训练模型和数据集。配置微调参数(如学习率、优化器)。执行微调(全参数微调或PEFT)。训练与验证,监控性能。保存和加载微调后的模型。回顾微调的核心要点。强调框架选择、数据准备与优化策略的重要性。提供进一步学习的资源推荐(如Hugging Face文档、学术论文)。原创 2025-05-28 11:48:41 · 910 阅读 · 0 评论 -
P7-大规模语言模型分布式训练与微调框架调研文档
本项目使用技术对模型进行微调,以适配自定义数据集(微调过程基于 Hugging Face 的库、peft实现 LoRA,以及modelscope下载模型。脚本支持在 CPU、CUDA 或 MPS 设备上训练,并包含详细的日志记录以便调试和监控。数据集需包含指令-输入-输出格式的对话数据,模型被微调以模仿历史剧角色“甄嬛”的对话风格,如系统提示中所指定。原创 2025-05-27 22:52:50 · 1193 阅读 · 0 评论 -
P6-将 Markdown 文档转换为问答对
本实现利用创建一个用户友好的 Web 界面,允许用户上传 Markdown 文档,通过(使用qwen-turbo模型)生成问答对,并在界面上展示结果。流程包括 Markdown 解析、API 调用、问答对生成和结果展示,优化为技术文档(如 TVM、模型优化)生成技术性问答对。原创 2025-05-13 11:17:06 · 651 阅读 · 0 评论 -
P5-OCR-结合PaddleOCR和LLM的PDF转换工具
是一个基于Python的应用程序,用于将PDF文件中的文本转换为格式良好的Markdown文档。它利用PaddleOCR进行光学字符识别(OCR)从PDF页面中提取文本,并使用Qwen-plus大语言模型将提取的文本结构化为Markdown格式。该应用程序通过Gradio提供了一个用户友好的Web界面,允许用户上传PDF、处理文件并查看生成的Markdown输出。原创 2025-05-09 14:32:48 · 1265 阅读 · 0 评论 -
P4-GateIO量化交易
本教程将介绍如何使用 Python 实现一个简单的虚拟笔量化交易系统。我们将通过模拟市场数据和交易逻辑,帮助您理解量化交易的基本概念和实现方法。生成虚拟市场数据。实现简单的移动平均策略。生成交易信号并执行交易。回测策略并计算收益。量化交易的核心在于策略设计和数据分析。您可以在此基础上尝试更复杂的策略,如均值回归、动量策略等。原创 2025-05-07 11:09:43 · 351 阅读 · 0 评论 -
P3-vLLM-安装与使用指南
vLLM 是一个高效的大语言模型(LLM)推理和服务库,针对 GPU 和 CPU 环境进行了优化。本指南详细介绍了 vLLM(0.8.3 版本)的安装步骤、基本使用示例、常见问题排查方法以及进阶配置。原创 2025-05-07 11:03:23 · 470 阅读 · 0 评论 -
P2-RAG 问答系统 - 基于 PDF 的智能问答工具
是一个基于 Python 的桌面应用程序,结合了 Retrieval-Augmented Generation(RAG)技术和阿里云 DashScope API(Qwen-Plus 模型),通过上传 PDF 文件实现智能问答和多轮对话。这个工具可以从 PDF 中提取文本,构建向量数据库,并利用大语言模型回答用户查询,特别适合需要快速理解文档内容、挖掘知识点的场景,比如学术研究、技术文档分析或教育资料整理。这不仅是一个技术demo,更是一个能帮助你快速消化文档、提取价值的实用工具!原创 2025-05-06 18:30:42 · 820 阅读 · 0 评论 -
P1-问答数据集生成器-用大模型记录我的人生
问答数据集生成器是一个基于 PyQt5 和阿里云 DashScope API 的桌面应用程序,旨在帮助用户通过大语言模型生成问答数据集,并支持问题生成、答案润色、数据集管理和总结功能。该工具特别适合需要快速构建高质量问答数据集的场景,用于大模型微调。自动生成不重复的问题。输入并润色答案。管理JSON格式的问答数据集。基于历史问答对生成总结或替换个人经历。原创 2025-05-06 18:15:17 · 1383 阅读 · 0 评论