高效使用chatGPT等大模型方法

参考文档:chatGPT官方文档和其余国内大模型输出结果

高效使用chatGPT视频:学完这个视频,简历加一条:熟练掌握ChatGPT解决复杂问题|ChatGPT使用教程_哔哩哔哩_bilibili

chatGPT官方关键词使用建议: Awesome ChatGPT Prompts | This repo includes ChatGPT prompt curation to use ChatGPT better.

一、大模型相关概念和简介 

本文所有使用技巧不仅包括chatGPT,也可应用于其它国内的百度的【文心一言】,阿里的【豆包】,暗之月夜的【kimi】等等:可参考AI工具集的【AI对话聊天】的工具:AI工具集 | 700+ AI工具集合官网,国内外AI工具集导航大全

1.1 大模型概念和原理

表格输出chatGPT大模型和机器学习和深度学习,自然语言,定义和概念、原理、重要性,优势,劣势,跟其它相关技术联系和结构,实际解决问题,应用什么场景,结论。

定义和概念 原理 重要性 优势 劣势 与其他技术的联系和结构 实际解决问题 应用场景 结论
ChatGPT大模型 基于Transformer架构的自然语言生成模型 通过大规模预训练和微调生成自然语言文本 改进人机交互,提升自然语言生成质量 生成文本流畅自然,能处理多种语言任务 需要大量计算资源,可能产生偏见和错误信息 结合NLP、机器学习和深度学习技术,使用云计算资源部署 自动化写作、对话生成、语言翻译 客服机器人、内容创作、教育辅助 在自然语言生成领域表现出色,具有广泛应用潜力
机器学习 通过数据训练模型以进行预测或分类 利用统计学和优化算法,基于数据进行训练和预测 提高数据处理和分析能力,推动智能化应用 能处理大规模数据,广泛应用于各领域 需要大量高质量数据,可能过拟合 是深度学习的基础,与统计学、数据挖掘联系紧密 图像识别、语音识别、预测分析 金融风控、医疗诊断、推荐系统 是人工智能的核心技术,广泛应用于各个行业
深度学习 基于多层神经网络的机器学习方法 使用多层神经网络进行特征提取和学习 在处理复杂数据和任务时具有显著优势 自动特征提取,能处理非结构化数据 计算复杂度高,需大量训练数据 是机器学习的一个子领域,与计算机视觉、NLP密切相关 目标检测、语音合成、自然语言处理 自动驾驶、智能监控、虚拟助手 深度学习推动了人工智能的进步,解决了许多复杂问题
自然语言处理(NLP) 处理和理解人类语言的技术 基于语言模型、统计方法和规则进行语言处理 改进人机交互,使机器理解和生成人类语言 处理自然语言文本,支持多种语言任务 理解语境和歧义存在挑战 结合机器学习和深度学习,使用语言模型如BERT和GPT 文本分析、情感分析、语言生成 语音助手、翻译服务、信息检索 NLP是人机交互的重要技术,提升了语言处理的智能化

1.2、为什么chatGPT模型这么重要和轰动跟传统的搜索引擎有何区别

1.2.1 chatGPT的重要性

  1. 自然语言处理的突破:

    1. 理解和生成: ChatGPT能够理解复杂的语言结构,并生成流畅且上下文相关的文本。这种能力远超以往的NLP技术。

    2. 多任务处理: 能够处理从回答问题、撰写文章到编写代码等多种任务,显示出高度的通用性。

  2. 用户体验的革命:

    1. 对话式互动: 提供自然、直观的交互方式,使得用户与机器的互动更接近于人类之间的交流。

    2. 即时响应: 能够实时生成回答,提升了用户体验的即时性和互动性。

  3. 广泛的应用领域:

    1. 自动化客服: 提供快速、准确的客户支持,降低人工成本,提高服务质量。

    2. 内容创作: 辅助撰写文章、生成创意内容,提升生产效率。

    3. 教育辅助: 通过定制化的回答帮助学习者理解复杂概念,提供个性化教育。

1.2.2 跟传统的搜索引擎

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值