参考文档:chatGPT官方文档和其余国内大模型输出结果
高效使用chatGPT视频:学完这个视频,简历加一条:熟练掌握ChatGPT解决复杂问题|ChatGPT使用教程_哔哩哔哩_bilibili
chatGPT官方关键词使用建议: Awesome ChatGPT Prompts | This repo includes ChatGPT prompt curation to use ChatGPT better.
一、大模型相关概念和简介
本文所有使用技巧不仅包括chatGPT,也可应用于其它国内的百度的【文心一言】,阿里的【豆包】,暗之月夜的【kimi】等等:可参考AI工具集的【AI对话聊天】的工具:AI工具集 | 700+ AI工具集合官网,国内外AI工具集导航大全
1.1 大模型概念和原理
表格输出chatGPT大模型和机器学习和深度学习,自然语言,定义和概念、原理、重要性,优势,劣势,跟其它相关技术联系和结构,实际解决问题,应用什么场景,结论。
定义和概念 | 原理 | 重要性 | 优势 | 劣势 | 与其他技术的联系和结构 | 实际解决问题 | 应用场景 | 结论 | |
ChatGPT大模型 | 基于Transformer架构的自然语言生成模型 | 通过大规模预训练和微调生成自然语言文本 | 改进人机交互,提升自然语言生成质量 | 生成文本流畅自然,能处理多种语言任务 | 需要大量计算资源,可能产生偏见和错误信息 | 结合NLP、机器学习和深度学习技术,使用云计算资源部署 | 自动化写作、对话生成、语言翻译 | 客服机器人、内容创作、教育辅助 | 在自然语言生成领域表现出色,具有广泛应用潜力 |
机器学习 | 通过数据训练模型以进行预测或分类 | 利用统计学和优化算法,基于数据进行训练和预测 | 提高数据处理和分析能力,推动智能化应用 | 能处理大规模数据,广泛应用于各领域 | 需要大量高质量数据,可能过拟合 | 是深度学习的基础,与统计学、数据挖掘联系紧密 | 图像识别、语音识别、预测分析 | 金融风控、医疗诊断、推荐系统 | 是人工智能的核心技术,广泛应用于各个行业 |
深度学习 | 基于多层神经网络的机器学习方法 | 使用多层神经网络进行特征提取和学习 | 在处理复杂数据和任务时具有显著优势 | 自动特征提取,能处理非结构化数据 | 计算复杂度高,需大量训练数据 | 是机器学习的一个子领域,与计算机视觉、NLP密切相关 | 目标检测、语音合成、自然语言处理 | 自动驾驶、智能监控、虚拟助手 | 深度学习推动了人工智能的进步,解决了许多复杂问题 |
自然语言处理(NLP) | 处理和理解人类语言的技术 | 基于语言模型、统计方法和规则进行语言处理 | 改进人机交互,使机器理解和生成人类语言 | 处理自然语言文本,支持多种语言任务 | 理解语境和歧义存在挑战 | 结合机器学习和深度学习,使用语言模型如BERT和GPT | 文本分析、情感分析、语言生成 | 语音助手、翻译服务、信息检索 | NLP是人机交互的重要技术,提升了语言处理的智能化 |
1.2、为什么chatGPT模型这么重要和轰动跟传统的搜索引擎有何区别
1.2.1 chatGPT的重要性
自然语言处理的突破:
理解和生成: ChatGPT能够理解复杂的语言结构,并生成流畅且上下文相关的文本。这种能力远超以往的NLP技术。
多任务处理: 能够处理从回答问题、撰写文章到编写代码等多种任务,显示出高度的通用性。
用户体验的革命:
对话式互动: 提供自然、直观的交互方式,使得用户与机器的互动更接近于人类之间的交流。
即时响应: 能够实时生成回答,提升了用户体验的即时性和互动性。
广泛的应用领域:
自动化客服: 提供快速、准确的客户支持,降低人工成本,提高服务质量。
内容创作: 辅助撰写文章、生成创意内容,提升生产效率。
教育辅助: 通过定制化的回答帮助学习者理解复杂概念,提供个性化教育。