推荐系统(LLM去偏?) | (WSDM24)预训练推荐系统:因果去偏视角

:::
大家好!今天我分享的文章是来自威斯康星大学麦迪逊分校和亚马逊AWS AI实验室的最新工作,文章所属领域是推荐系统和因果推理,作者针对跨域推荐中的偏差问题提出了一种基于因果去偏的预训练推荐系统框架PreRec。
:::

原文:Pre-trained Recommender Systems: A Causal Debiasing Perspective
地址:https://arxiv.org/abs/2310.19251
代码:https://github.com/myhakureimu/PreRec
出版:WSDM '24
机构: 威斯康星大学麦迪逊分校、亚马逊

1 研究问题

本文研究的核心问题是: 如何设计一个通用的预训练推荐系统框架,能够有效处理跨域推荐中的偏差问题。

::: block-1
假设我们有一个电商平台,想要为不同国家的用户推荐商品。每个国家的用户行为和商品特征都有所不同,直接将一个国家的推荐模型应用到另一个国家往往效果不佳。我们希望能够设计一个通用的推荐框架,可以在多个国家的数据上预训练,然后快速适应到新的国家市场,同时还能处理不同国家之间的偏差问题。
:::

本文研究问题的特点和现有方法面临的挑战主要体现在以下几个方面:

  • 跨域推荐中存在域内偏差和跨域偏差,这些偏差会影响模型的泛化能力。例如,不同国家的商品流行度分布不同(域内偏差),以及不同国家的用户行为模式差异(跨域偏差)。
  • 现有的预训练推荐方法(如ZESRec和UniSRec)没有考虑这些偏差,可能会导致模型过拟合源域数据。
  • 如何在保留通用知识的同时,有效地消除这些偏差是一个挑战。

针对这些挑战,本文提出了一种基于因果去偏的"PreRec"方法:

::: block-1
PreRec的核心思想是将推荐过程建模为一个概率图模型,并引入因果推理的思想来处理偏差。它就像一个精明的导购,不仅了解每个国家的商品和用户特点,还能识别出哪些是真正的用户偏好,哪些只是由于某个国家特定的促销活动或文化差异造成的偏差。具体来说,PreRec使用一个分层贝叶斯深度学习模型来捕获用户兴趣、商品特征、域特征和流行度等因素。在预训练阶段,它通过显式建模域内偏差(如商品流行度)和跨域偏差(如域特征),将这些偏差与通用知识分离。在推断阶段,它使用因果干预的方法来消除这些偏差的影响,只保留真正的用户-商品匹配信息。这就像PreRec在每个国家都派了一个"特工",这些特工不仅收集各自国家的数据,还能识别出哪些是该国特有的"噪音"。在给新国家的用户推荐时,PreRec就能抛开这些"噪音",专注于真正通用的推荐知识。
:::

2 研究方法

2.1 PreRec模型结构

PreRec是一种新型的预训练推荐系统,采用层次化贝叶斯深度学习框架。它的核心目标是解决多域预训练中的偏差问题,提高模型在新域上的泛化能力。PreRec的整体架构包括以下几个关键组件:

  1. 用户通用嵌入网络(User Universal Embedding Network):这个网络用于生成用户的通用嵌入表示。它接收用户的历史交互序列作为输入,通过一个序列模型(如Transformer)来聚合这些交互信息,最终输出用户的嵌入向量。
  2. 物品通用嵌入网络(Item Universal Embedding Network):这个网络用于生成物品的通用嵌入表示。它以物品的文本描述为输入,通过预训练的语言模型(如BERT)和一个单层神经网络来提取物品的语义特征,最终输出物品的嵌入向量。
  3. 域属性嵌入(Domain Embedding):这是一个可学习的向量,用于捕捉每个域的特有属性,如用户群体特征、促销活动等。
  4. 流行度嵌入(Popularity Embedding):这个组件用于建模物品在特定域内的流行度偏差。它基于物品的交互次数、流量和时间等因素计算得出。

举个例子,假设我们在构建一个跨国的电商推荐系统。对于一个来自美国的用户,用户通用嵌入网络会分析他过去购买的商品序列(如手机、耳机、充电器等),生成一个能够反映他整体兴趣的嵌入向量。对于一个新上架的手机,物品通用嵌入网络会分析其产品描述,生成一个反映手机特征的嵌入向量。同时,我们还会有一个代表"美国市场"的域属性嵌入,以及反映这款手机在美国市场受欢迎程度的流行度嵌入。

PreRec的创新之处在于,它明确地将这些不同来源的信息(用户兴趣、物品特征、域属性、流行度)分开建模,这为后续的去偏和迁移学习奠定了基础。

2.2 多域预训练

在多域预训练阶段,PreRec的目标是从多个源域中提取通用知识,同时显式建模和处理不同类型的偏差。这个过程主要包括以下几个步骤:

  1. 数据收集:从多个源域(例如不同国家的电商平台)收集用户-物品交互数据、物品描述文本以及相关的元数据。
  2. 通用表示学习:使用物品通用嵌入网络和用户通用嵌入网络,分别学习物品和用户的通用表示。这些表示应该能够捕捉到跨域的共性特征。
  3. 域内偏差建模:PreRec显式地建模了域内的流行度偏差。具体来说,它引入了一个流行度嵌入 ZjZ_jZj,用于捕捉物品 jjj 在特定域内的流行度效应。这个流行度嵌入是基于物品的交互次数、总流量和时间等因素计算得出的。
  4. 跨域偏差建模:PreRec引入了一个域属性嵌入 DkD_kDk,用于捕捉每个域 kkk 的特有属性。这个嵌入可以理解为域的隐藏表示,它影响着该域内的用户兴趣、物品属性和用户行为模式。
  5. 联合优化:PreRec通过最小化负对数似然来联合优化所有这些组件。优化目标函数如下:

L=∑−log(fsoftmax(UiTVj+DkWd+ZjWz))+λz/2∑∣∣Zj−fpop(Fj)∣∣2+λv/2∑∣∣Vj−fe(Dk,Zj)∣∣2+λu/2∑∣∣Ui−fseq(Dk,Hi)∣∣2+λd/2∑∣∣Dk∣∣2 L = ∑ -log(f_softmax(U_i^T V_j + D_k W_d + Z_j W_z)) + λ_z/2 ∑ ||Z_j - f_pop(F_j)||^2 + λ_v/2 ∑ ||V_j - f_e(D_k, Z_j)||^2 + λ_u/2 ∑ ||U_i - f_seq(D_k, H_i)||^2 + λ_d/2 ∑ ||D_k||^2 L=log(fsoftmax(UiTVj+DkWd+ZjWz))+λz

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值