超分辨率卷积神经网络(SRCNN)的关键算法与公式讲解
1. 卷积层
卷积层通过对输入数据进行卷积操作来提取特征。此操作包括一个过滤器(或称为内核),该过滤器在输入图像上滑动,并计算过滤器与其覆盖的图像像素的点积。二维卷积的公式(步长为1,填充适当)如下:
(f∗g)(i,j)=∑m∑nf(m,n)⋅g(i−m,j−n) (f \ast g)(i, j) = \sum_m \sum_n f(m, n) \cdot g(i - m, j - n) (f∗g)(i,j)=m∑n∑f(m,n)⋅g(i−