超分辨率卷积神经网络(SRCNN)的关键算法与公式讲解

超分辨率卷积神经网络(SRCNN)的关键算法与公式讲解

1. 卷积层

卷积层通过对输入数据进行卷积操作来提取特征。此操作包括一个过滤器(或称为内核),该过滤器在输入图像上滑动,并计算过滤器与其覆盖的图像像素的点积。二维卷积的公式(步长为1,填充适当)如下:

(f∗g)(i,j)=∑m∑nf(m,n)⋅g(i−m,j−n) (f \ast g)(i, j) = \sum_m \sum_n f(m, n) \cdot g(i - m, j - n) (fg)(i,j)=mnf(m,n)g(i

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

行走的小部落

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值