从R-CNN到Faster-R-CNN的简单介绍

1、R-CNN

RCNN算法4个步骤

1、一张图像生成1K~2K个候选区域(使用Selective Search方法)

2、对每个候选区域,使用深度网络提取特征

3、特征送入每一类的SVM分类器,判别是否属于该类

4、使用回归器精细修正候选框位置

R-CNN 缺陷 :

1.训练是一个多阶段的过程 (卷积网络 → 支持向量机 → 边界框回归网络);

2.训练在空间和时间上都比较复杂

3.物体检测很慢

2、Fast R-CNN

Fast R-CNN算法3个步骤

1、一张图像生成1K~2K个候选区域(使用Selective Search方法)

2、将整张图像输入网络得到相应的特征图,将生成的候选框投影到特征图上获得相应的特征矩阵。

3、将每个特征矩阵通过ROI pooling层缩放到7x7大小的特征图,接着将特征图展平通过一系列全连接层得到预测结果。

3、Faster-RCNN

Faster R-CNN是在Fast R-CNN的基础上引入RPN而得到的,旨在解决Fast R-CNN中候选区域生成耗时的问题。通过RPN,Faster R-CNN能够直接生成高质量的候选区域从而大大提高了检测速度。RPN模块负责生成Region Proposals,即告诉Fast R-CNN模块应关注原图片的哪些区域。Fast R-CNN模块则使用这些proposed regions来进行目标检测任务。Faster R-CNN解决了之前版本中Region Proposal使用selective search算法在CPU上运行,无法享受GPU加速的问题,并且通过共享计算的机会提高了算法的运行速度。

总结:

R-CNN中含有回归器,SVM,CNN,道路Faster中只有CNN了,回归器和分类器被接到了全连接层后面,到了FasterR-CNN,把SS算法换成了RPN,可以享受到GPU的加速,效果更快。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

箫毒赵药师

嘿嘿嘿

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值