如果你不知道自己电脑的显卡型号,但想安装PyTorch,可以按照以下步骤操作:
安装CPU版本的PyTorch
-
安装Python和pip
- 确保你的系统中安装了Python。如果没有安装,可以从Python官网下载并安装。
- 一般情况下,Python会自带pip。如果发现没有安装,可以通过以下命令安装pip:
python -m ensurepip --upgrade
-
创建虚拟环境
- 使用虚拟环境可以避免依赖冲突。可以使用
venv
模块创建一个新的虚拟环境:python -m venv myenv
- 激活虚拟环境:
- 在Windows系统中:
myenv\Scripts\activate
- 在macOS和Linux系统中:
source myenv/bin/activate
- 在Windows系统中:
- 使用虚拟环境可以避免依赖冲突。可以使用
-
安装PyTorch
- 在激活的虚拟环境中,使用以下命令安装CPU版本的PyTorch:
pip install torch torchvision torchaudio
- 或者使用conda安装:
conda install pytorch torchvision torchaudio cpuonly -c pytorch
- 在激活的虚拟环境中,使用以下命令安装CPU版本的PyTorch:
-
验证安装
- 安装完成后,可以通过以下Python命令测试PyTorch是否安装成功:
import torch print(torch.__version__) print(torch.cuda.is_available()) # 应该输出False
- 安装完成后,可以通过以下Python命令测试PyTorch是否安装成功:
安装GPU版本的PyTorch(如果电脑有NVIDIA显卡)
-
查看显卡驱动版本
- 打开命令提示符或终端,输入以下命令查看显卡驱动版本:
nvidia-smi
- 记下显示的CUDA版本号。
- 打开命令提示符或终端,输入以下命令查看显卡驱动版本:
-
安装CUDA
- 访问NVIDIA CUDA Toolkit Archive,下载并安装与你的显卡驱动版本兼容的CUDA版本。
-
安装cuDNN(可选)
- 访问NVIDIA cuDNN Archive,下载并安装与你的CUDA版本兼容的cuDNN版本。将解压后的文件复制到CUDA的安装目录下。
-
安装PyTorch
- 访问PyTorch官网,点击“Get Started”。
- 选择合适的选项,确保“Compute Platform”选择“CUDA”并选择正确的CUDA版本。
- 复制提供的安装命令并在激活的虚拟环境中运行。例如:
pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113
- 或者使用conda安装:
conda install pytorch torchvision torchaudio pytorch-cuda=11.3 -c pytorch -c nvidia
-
验证安装
- 安装完成后,可以通过以下Python命令测试PyTorch是否安装成功:
import torch print(torch.__version__) print(torch.cuda.is_available()) # 应该输出True
- 安装完成后,可以通过以下Python命令测试PyTorch是否安装成功:
如果你不确定电脑是否有NVIDIA显卡,可以通过以下步骤检查:
- 打开控制面板。
- 点击设备管理器。
- 在设备管理器中展开显示适配器选项。
- 检查列表中是否有NVIDIA显卡型号出现。