RT-DETR
1.模型介绍
📌 什么是 RT-DETR ?
RT-DETR(Real-Time Detection Transformer) 是百度和视觉学界联合提出的一种端到端实时目标检测方法,是DETR 系列的加速优化版。
它解决了原始 DETR(2020) 推理慢、收敛慢的问题,让 Transformer-based 检测器能在实时速率下工作,同时保持高精度。
📖 核心改进点
模块 | 原始DETR | RT-DETR |
---|---|---|
编码器 | Transformer Encoder | 精简型 Encoder + 动态特征增强 |
检测头 | 查询-匹配式 DETR Head | Group-DETR Head(分组预测更高效) |
匹配方式 | 匈牙利匹配 | 匈牙利匹配(保留,稳定可靠) |
上采样 | FPN特征拼接 | 多层特征解耦动态融合 |
NMS | 不用(端到端预测) | 不用,直接输出 Top-N 框 |
收敛速度 | 极慢(500轮起步) | 极快(50轮左右) |
📊 结构示意
🌱 下图是简化结构
输入图像
│
Backbone(ResNet/ConvNext)
│
Neck(多层特征)
│
精简 Transformer Encoder
│
Group DETR Head(查询式)
│
匈牙利匹配 (训练时)
│
直接输出预测结果 (无需NMS)
🎯 RT-DETR 优势
✅ 实时速率,接近 YOLOv8 的 FPS
✅ 端到端,不用NMS、anchor
✅ 精度高,尤其是遮挡、细粒度目标表现优异
✅ 支持多种backbone(ResNet50、ResNet101、ConvNeXt)
✅ 高效、轻量,适合工程部署
⚠️ RT-DETR 缺点
⚠️ 对硬件要求较高(特别是显存)
⚠️ 动态查询 Head 复杂,不如 YOLO 系列直观
⚠️ 小目标场景需微调特征提取策略
📈 应用场景
📦 智能制造缺陷检测
📦 智慧城市交通分析
📦 卫星遥感小目标检测
📦 实时安全监控
📑 论文 & 官方仓库
2.模型框架
##3.数据集配置
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# COCO128 dataset https://www.kaggle.com/datasets/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/detect/coco/
# Example usage: yolo train data=coco128.yaml
# parent
# ├── ultralytics
# └── datasets
# └── coco128 ← downloads here (7 MB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
train: /root/DATA/backup/images/train #
val: /root/DATA/backup/images/val
# Classes
names:
0: person
1: bicycle
2: car
3: motorcycle
4: airplane
5: bus
6: train
7: truck
8: boat
9: traffic light
10: fire hydrant
11: stop sign
12: parking meter
13: bench
14: bird
15: cat
16: dog
17: horse
18: sheep
19: cow
20: elephant