深度学习项目之RT-DETR训练自己数据集

1.模型介绍

📌 什么是 RT-DETR ?

RT-DETR(Real-Time Detection Transformer) 是百度和视觉学界联合提出的一种端到端实时目标检测方法,是DETR 系列的加速优化版

它解决了原始 DETR(2020) 推理慢、收敛慢的问题,让 Transformer-based 检测器能在实时速率下工作,同时保持高精度。


📖 核心改进点

模块 原始DETR RT-DETR
编码器 Transformer Encoder 精简型 Encoder + 动态特征增强
检测头 查询-匹配式 DETR Head Group-DETR Head(分组预测更高效)
匹配方式 匈牙利匹配 匈牙利匹配(保留,稳定可靠)
上采样 FPN特征拼接 多层特征解耦动态融合
NMS 不用(端到端预测) 不用,直接输出 Top-N 框
收敛速度 极慢(500轮起步) 极快(50轮左右)

📊 结构示意

🌱 下图是简化结构

输入图像
   │
Backbone(ResNet/ConvNext)
   │
Neck(多层特征)
   │
精简 Transformer Encoder
   │
Group DETR Head(查询式)
   │
匈牙利匹配 (训练时)
   │
直接输出预测结果 (无需NMS)

🎯 RT-DETR 优势

✅ 实时速率,接近 YOLOv8 的 FPS
✅ 端到端,不用NMS、anchor
✅ 精度高,尤其是遮挡、细粒度目标表现优异
✅ 支持多种backbone(ResNet50、ResNet101、ConvNeXt)
✅ 高效、轻量,适合工程部署


⚠️ RT-DETR 缺点

⚠️ 对硬件要求较高(特别是显存)
⚠️ 动态查询 Head 复杂,不如 YOLO 系列直观
⚠️ 小目标场景需微调特征提取策略


📈 应用场景

📦 智能制造缺陷检测
📦 智慧城市交通分析
📦 卫星遥感小目标检测
📦 实时安全监控


📑 论文 & 官方仓库

2.模型框架

在这里插入图片描述
##3.数据集配置

# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license

# COCO128 dataset https://www.kaggle.com/datasets/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/detect/coco/
# Example usage: yolo train data=coco128.yaml
# parent
# ├── ultralytics
# └── datasets
#     └── coco128  ← downloads here (7 MB)


# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]

train: /root/DATA/backup/images/train #
val: /root/DATA/backup/images/val

# Classes
names:
  0: person
  1: bicycle
  2: car
  3: motorcycle
  4: airplane
  5: bus
  6: train
  7: truck
  8: boat
  9: traffic light
  10: fire hydrant
  11: stop sign
  12: parking meter
  13: bench
  14: bird
  15: cat
  16: dog
  17: horse
  18: sheep
  19: cow
  20: elephant
  
### 使用 RTDETR 模型训练自定义数据集(魔鬼面具) #### 准备环境 为了使用 RTDETR 模型来训练特定于魔鬼面具的数据集,首先需要准备合适的开发环境。安装必要的依赖库可以确保后续操作顺利进行。 ```bash pip install paddlepaddle paddledet ``` #### 数据集准备 对于魔鬼面具这一特定目标检测任务,需准备好标注好的图像数据集并转换成适合模型输入的格式。通常情况下,PaddleDetection 支持 COCO 和 VOC 格式的标注文件[^1]。 创建一个新的目录结构用于存储数据: ``` datasets/ ├── devil_masks/ │ ├── annotations/ │ │ └── instances_train.json │ ├── images/ │ │ ├── train2017/ │ │ └── val2017/ ``` 其中 `instances_train.json` 是按照 COCO 格式编写的标注文件,包含了所有图片的信息以及对应的标签位置信息。 #### 配置文件修改 接下来要调整配置文件以适应新的数据集。可以从 PaddleDetection 的官方仓库下载默认配置作为基础模板,并在此基础上做适当改动。 编辑配置文件中的路径参数指向本地的数据集地址;设置类别名称列表只包含 "devil_mask" 这一类别;还可以根据实际情况调节学习率和其他超参等[^2]。 ```yaml architecture: 'RTDETR' pretrain_weights: https://bj.bcebos.com/paddledet/models/rt detr_r50_8xb8-300e_coco.pdparams num_classes: 1 data_root: './datasets/devil_masks/' ... ``` #### 开始训练 一切就绪之后就可以启动训练过程了。通过命令行工具指定好相应的配置文件即可开始执行训练脚本。 ```bash python tools/train.py -c configs/rt_detr.yml --eval ``` 这将会读取之前设定好的各项参数,在 GPU 上运行迭代优化算法直至收敛或达到预设的最大轮次限制[^3]。 #### 测试与评估 当训练完成后,可以通过验证集上的表现来初步判断模型的效果好坏。利用测试模式下的推理功能查看一些样本预测结果是否合理准确。 ```python from ppdet.engine import Trainer trainer = Trainer(cfg, mode='test') results = trainer.test() ``` 以上就是基于 RTDETR 实现针对魔鬼面具的目标检测全流程介绍。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

全栈开发 PAMI

下一个构架师就是你~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值