
pytorch
爱学习的羽
一直在学习
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
rnn相关
self.lstm = nn.LSTM(config.embed(300维的输入特征), config.hidden_size(128个隐藏神经元), config.num_layers(两层的LSTM),bidirectional=True(是单向的还是双向的,双向的效果好), batch_first=True, dropout=config.dropout)加入一些负样本(负采样模型) 顺序的词太多了,需要加乱序的词,作为负样本。基于字做的,在此数据集中有4000+个可能,而词更多,运算量大。原创 2024-01-21 16:59:43 · 599 阅读 · 0 评论 -
手写resnet18
【代码】手写resnet18。原创 2023-12-03 11:14:09 · 216 阅读 · 0 评论 -
cifar10实战图像分类
【代码】cifar10实战图像分类。原创 2023-12-02 21:58:40 · 109 阅读 · 0 评论 -
logistic回归详解
cross entropy 越小越好,优化起来速度更快,在pytorch中,把softmax和log打包到一起了。logistic是因为加了一个sigmoid函数,将输出预测值映射到【0,1】kl散度,两个分布重合的话,kl散度等于0,因为他们很整齐。有时候使用cross entropy==》 分类问题。softmax解决多分类问题,让大的概率值更大。有时候使用MSE损失函数,拟合。原创 2023-12-02 19:07:13 · 315 阅读 · 0 评论 -
深度学习预预训练与MMPretrain
包含多种丰富任务的开箱即用推理api安装步骤代码框架以及各个目录的含义用法:数据流。原创 2023-06-05 20:53:14 · 853 阅读 · 0 评论 -
MMPose关键点检测实战
给命令设置超时连接时间 mim install “mmdet>=3.0.0rc6” --default-timeout=6000。配置文件faster_r_cnn_triangle.py会有数据集和路径信息。categories里面有框的类别、点的信息、点的连接的信息。RTMPose精度非常高,比YOLOV8还高,但速度慢。超显存了,调小batch_size 或者调小图片的尺寸。-b代表切换到某个分支,保证分支和作者的教程一致。训练自己的数据集,需要改上面的前三行就行。问题:热力图上的点等间距分布。原创 2023-06-03 21:06:12 · 942 阅读 · 0 评论 -
人体姿态估计
先用目标检测算法框出人的位置,再基于单人图像估计每个人的姿态。缺点:人越多,计算量越大,耗时长;整体受限于目标检测器的精度。级联的好处:不仅看到局部信息,还能使得神经网络参考整体信息。先检测出关键点,再基于位置关系或者其他信息聚类成不同的人。使用关键点相似度(OKS)作为评价指标计算。K部图匹配问题,基于亲和度匹配关键点。优点:推理速度与人的数量无关。原创 2023-06-02 20:14:36 · 411 阅读 · 0 评论 -
OpenMMlab的整体概述和作用
openmmlab的作用以及优势介绍原创 2023-05-31 21:44:40 · 794 阅读 · 0 评论 -
pytorch配置深度学习GPU环境,以及报错解决方案
首先安装好Anaconda,使用临时清华源创建自己的环境官方文档的帮助下载安装包,下载对应版本:https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/linux-64/我选择新的版本这里电脑主机只需要有官方nvidia驱动就可以,不用再配置cuda、cudnnconda install --offline pytorch-1.6.0-py3.7_cuda10.2.89_cudnn7.6.5_0.tar.原创 2020-11-26 19:20:49 · 1224 阅读 · 3 评论 -
pytorch搭建神经网络初体验
#!/usr/bin/env python# coding: utf-8# In[11]:get_ipython().run_line_magic('matplotlib', 'inline')import torchimport randomimport numpy as np from IPython import displayfrom matplotlib import pyplot as plt# In[12]:# 数据集data = np.array([[1.原创 2020-11-08 21:26:58 · 283 阅读 · 0 评论