Expected to have finished reduction in the prior iteration before starting a new one

多卡分布式训练时,模型中存在部分参数没有参与梯度更新,可以先看看是哪个模块,再定位具体的网络层,可以逐个关闭某个层的梯度进行排查
param.requires_grad = False
或者 torch.nn.parallel.DistributedDataParallel中加入find_unused_parameters参数并设置初始值为True
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值