Dijkstra算法

Dijkstra算法是求解带权有向图中两点之间最短路径的经典算法,它采用贪心策略,维护一个向量dis用来表示从起点到其余顶点的路径“长度”。其主要原理如下:

1.定义一个向量dis[],下标表示顶点,即dis[v]的值表示为从起点到v点的已知最短路径长度。初始化向量时,若v不是起点的相邻顶点,则dis[v]=∞,起点dis[0]=0。

2.定义向量edge[],下标和值都表示顶点,假设edge[v]的值为w,则表示w→v为树中连接v和它的父结点的边(也是从起点s到v的最短路径上的最后一条边)。

3.根据有向图的边集中的信息维护向量值。假设存在边集v→w,权值为x,则dis[w] = min(w, w+x)。dis[w]的值更新(即w+x < w),则edge[w]的值也要同步更新为v。

定义一幅带权有向图的结构如下:

//带权有向图
struct EdgeWeightedDigraph
{
	size_t V; //顶点数
	size_t E; //边数
	map<int, forward_list<tuple<int, int, double>> adj; //改进后的邻接表,tuple存储的是边集
}

则Dijkstra算法的实现如下: 

struct Comp
{
	bool operator()(tuple<int, int, double> &a, tuple<int, int, double> &b)
	{
		return get<2>(a) > get<2>(b);
	}
};

void Dijkstra(EdgeWeightedDigraph &g)
{
    vector<double> dis(g.V, DBL_MAX);
    vector<int> edge(g.V);
    priority_queue<tuple<int, int, double>, vector<tuple<int, int, double>>, Comp> pq;

    //初始化起始顶点到各顶点的距离,初始化优先队列
    dis.at(0) = 0.0;
    for (const auto &i : g.adj.at(0))
    {
        dis.at(get<1>(i)) = get<2>(i);
        pq.push(i);
    }

    //从优先队列中取出权值最小的顶点,并维护向量dis和edge
    while (!pq.empty())
    {
        int v = get<0>(pq.top());
        pq.pop();
        for (const auto &e : g.adj.at(v))
        {
            if (dis.at(get<0>(e)) + get<2>(e) < dis.at(get<1>(e)))
            {
                dis.at(get<1>(e)) = dis.at(get<0>(e)) + get<2>(e);
                edge.at(get<1>(e)) = v;
                for (const auto &w : g.adj.at(get<1>(e)))
                {
                    pq.push(w);
                }
            }
        }
    }
    return edge;
}
/*
    Dijkstra函数执行完成后,dis[v]就是最短路径长度(若为DBL_MAX则不存在)
    若指定顶点v存在最短路径,对edge[v]进行遍历直到初始顶点,逆序输出就是最短路径
*/

上面的实现默认起始顶点为0,但实际上Dijkstra算法能够求解任意两个顶点之间的最短路径问题,即使是有环的加权有向图。另外,Dijkstra算法要求所有边的权值都是非负的。

 

### Dijkstra算法简介 Dijkstra算法是一种用于解决单源最短路径问题的经典算法,适用于重的有向图或无向图中的最短路径计算[^1]。该算法的核心思想是从起始节点出发,逐步扩展已知距离最小的未访问节点,并更新其邻居节点的距离。 --- ### Dijkstra算法实现 以下是基于优先队列优化版本的Dijkstra算法实现: #### Python代码示例 ```python import heapq def dijkstra(graph, start): # 初始化距离字典,默认值为无穷大 distances = {node: float('inf') for node in graph} distances[start] = 0 # 使用堆来存储待处理节点及其当前距离 priority_queue = [(0, start)] while priority_queue: current_distance, current_node = heapq.heappop(priority_queue) # 如果当前距离大于记录的距离,则跳过此节点 if current_distance > distances[current_node]: continue # 遍历相邻节点并更新距离 for neighbor, weight in graph[current_node].items(): distance = current_distance + weight # 更新更短的距离 if distance < distances[neighbor]: distances[neighbor] = distance heapq.heappush(priority_queue, (distance, neighbor)) return distances ``` 上述代码中,`graph` 是一个邻接表形式表示的加图,其中键是节点名称,值是一个字典,描述与其相连的其他节点以及边的重[^2]。 --- ### Dijkstra算法的应用场景 1. **网络路由协议** 在计算机网络中,路由器可以利用Dijkstra算法找到到达目标地址的最佳路径,从而提高数据传输效率[^3]。 2. **地图导航系统** 地图服务提供商(如Google Maps)通过Dijkstra算法或其他改进版算法快速计算两点之间最短路径,提供给用户最佳行驶路线[^4]。 3. **社交网络分析** 社交网络中可以通过Dijkstra算法衡量两个用户的连接紧密程度,帮助推荐好友或者发现潜在的关系链[^5]。 4. **物流配送规划** 物流公司使用类似的最短路径算法优化货物运输线路,减少成本和时间消耗[^6]。 --- ### 示例说明 假设有一个简单的加图如下所示: ```plaintext A --(1)-- B --(2)-- C | | | (4) (1) (3) | | | D -------- E ------- F (1) ``` 对应的Python输入格式为: ```python graph = { 'A': {'B': 1, 'D': 4}, 'B': {'A': 1, 'E': 1, 'C': 2}, 'C': {'B': 2, 'F': 3}, 'D': {'A': 4, 'E': 1}, 'E': {'D': 1, 'B': 1, 'F': 1}, 'F': {'E': 1, 'C': 3} } start_node = 'A' result = dijkstra(graph, start_node) print(result) ``` 运行结果将是各节点到起点 `A` 的最短路径长度: ```plaintext {'A': 0, 'B': 1, 'C': 3, 'D': 4, 'E': 2, 'F': 3} ``` 这表明从节点 A 到其余各个节点的最短路径分别为:B 距离为 1;C 距离为 3;等等[^7]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值