《机器学习》周志华读书笔记(五)神经网络

本文的宗旨:简单!清楚!

五、神经网络

5.1神经元模型

下图为M-P神经元模型,想象一下,一张考试卷子,卷子中的每一道题作为一个神经元的输入进入你的大脑,而每道题的分值代表着这道题的权重,你的大脑经过一系列的分析,分析出了先做哪道题,这就是一个简单的神经网络。而你是通过输出y来计算出你要先做哪道题。

我们注意到图中输出y=f(。。。)那么这里面f(x)是什么函数呢?答案是激活函数

我们知道理想很丰满,显示很骨感,阶跃函数现实中存在不光滑,不连续等问题,所以我们习惯性用Sigmoid函数,

将许多的神经元按照一定得层次结构组合起来不就得到了神经网络!

5.2感知机与多层神经网络

感知机由两层神经元组成。感知机可以实现逻辑与、或、非<

### 周志华机器学习籍复习指南 为了有效准备期末考试,建议采用结构化的复习方法来理解周志华所著《机器学习》的核心概念。这本籍涵盖了广泛的理论和技术细节,在复习过程中应当注重以下几个方面: #### 1. 掌握基础概念 确保对监督学习、无监督学习和支持向量机等基本术语的理解深入透彻[^1]。 #### 2. 关键算法详解 重点研究中提到的关键算法,比如决策树、朴素贝叶斯分类器以及K近邻算法等。对于每种算法,不仅要了解其工作原理,还要熟悉如何应用这些算法解决实际问题。 #### 3. 数学推导的重要性 注意中涉及的各种数学公式的推导过程,特别是概率论、线性代数和最优化方面的知识。这部分内容虽然可能较为抽象复杂,但对于构建坚实的理论基础至关重要。 #### 4. 实践练习不可或缺 通过编程实现一些简单的机器学习项目或实验可以帮助加深理解和记忆。尝试使用Python或其他工具包重现本上的案例,并探索不同参数设置下模型性能的变化[^2]。 ```python from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier # 加载鸢尾花数据集 data = load_iris() X_train, X_test, y_train, y_test = train_test_split(data.data, data.target) # 创建并训练kNN分类器 clf = KNeighborsClassifier(n_neighbors=3).fit(X_train, y_train) print(f'Accuracy on test set: {clf.score(X_test, y_test):.2f}') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值