DeepSeek-R1深度报告:基于Python强化学习的前沿长链推理模型揭秘与实战

配合此文章使用,效果更佳:DeepSeek-R1深度报告 —— 50道相关面试题 —— 深刻理解相关概念(DeepSeek-R1大模型 + 强化学习(RL)+ 推理能力)

一、前言与背景铺垫
在当今人工智能与大语言模型(Large Language Model, LLM)快速演进的时代,如何有效提升大模型的深层推理能力,已经成为全球技术社区高度关注的核心课题之一。近几年来,我们不断见证像 GPT、BERT、Llama、Qwen 等模型在自然语言理解、对话交互以及各类任务泛化方面的惊人表现。但仍有一个绕不开的事实:无论是工业界还是学术界,大模型在「长链推理」或「复杂推理」方面尚存不足。

长链推理(Chain-of-Thought, CoT)这一概念,最早由一些研究团队提出并在特定实验中显现出卓越能力。其本质是希望模型在回答问题时具有“逐步思考”的过程,而不只是直接吐出一个结论。OpenAI 的 o1 系列大模型正是在这个思路上得到强化——通过让模型在回答前先“想一想”,再给出答案,从而得到更高的准确率和更好的逻辑连贯性。

可是,如何让模型更“主动地”进行这类思考?又如何在没有大量人工标注的情况下,让模型自己学会分解问题、反思自己的推理过程ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

快撑死的鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值