一、混淆矩阵(Confusion Matrix):简单说就是“成绩单”
想象你是个医生,要用一个模型判断病人有没有得病(比如感冒)。病人分两类:有病(阳性)和没病(阴性)。模型会预测每个病人是“有病”还是“没病”,但它不一定每次都猜对。混淆矩阵就是一张表,记录模型猜对猜错的情况,像考试后的成绩单一样。
混淆矩阵的四块“拼图”
假设模型预测了100个病人,结果可以用一个2×2的表格表示:
模型预测“有病” | 模型预测“没病” | |
---|---|---|
实际有病 | 真阳性 (TP) | 假阴性 (FN) |
实际没病 | 假阳性 (FP) | 真阴性 (TN) |
- 真阳性 (TP, True Positive):实际有病,模型也说有病。比如10个真病人,模型正确认出8个,TP=8。
- 假阴性 (FN, False Negative):实际有病,模型却说没病。剩下2个病人被漏诊,FN=2。