解释混淆矩阵(Confusion Matrix)和 ROC 曲线(面试题200合集,高频、关键)

一、混淆矩阵(Confusion Matrix):简单说就是“成绩单”

想象你是个医生,要用一个模型判断病人有没有得病(比如感冒)。病人分两类:有病(阳性)没病(阴性)。模型会预测每个病人是“有病”还是“没病”,但它不一定每次都猜对。混淆矩阵就是一张表,记录模型猜对猜错的情况,像考试后的成绩单一样。

混淆矩阵的四块“拼图”

假设模型预测了100个病人,结果可以用一个2×2的表格表示:

模型预测“有病” 模型预测“没病”
实际有病 真阳性 (TP) 假阴性 (FN)
实际没病 假阳性 (FP) 真阴性 (TN)
  • 真阳性 (TP, True Positive):实际有病,模型也说有病。比如10个真病人,模型正确认出8个,TP=8。
  • 假阴性 (FN, False Negative):实际有病,模型却说没病。剩下2个病人被漏诊,FN=2。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

快撑死的鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值