A single-output digital system with four inputs (a,b,c,d) generates a logic-1 when 2, 7, or 15 appears on the inputs, and a logic-0 when 0, 1, 4, 5, 6, 9, 10, 13, or 14 appears. The input conditions for the numbers 3, 8, 11, and 12 never occur in this system. For example, 7 corresponds to a,b,c,d being set to 0,1,1,1, respectively.
Determine the output out_sop in minimum SOP form, and the output out_pos in minimum POS form.
具有四个输入(A、b、c、d)的单输出数字系统在输入上出现2、7或15时生成逻辑-1,在出现0、1、4、5、6、9、10、13或14时生成逻辑-0。数字3、8、11和12的输入条件在此系统中从未出现。例如,7对应于a、b、c、d分别设置为0,1,1,1。
以最小sop形式确定输出out_sop,以最小pos形式确定输出out_pos。
根据题目画出卡诺图:
分析:
1. SOP(Sum of Products):
SOP表示为“乘积项之和 -乘积和”,是一种将逻辑函数表示为AND(与)门的输出进行OR(或)连接的形式。
- 在卡诺图中,SOP通常通过将1(真值)所在的单元格圈起来,然后找到这些圈能够覆盖的最小数量的单元格,每个圈代表一个AND门的乘积项。
- SOP形式的逻辑表达式通常用于实现逻辑电路,因为它们直接对应于AND和OR门的组合。
2. POS(Product of Sums):
POS表示为“求和项之积-和乘积”,是一种将逻辑函数表示为OR门的输出进行AND连接的形式。 在卡诺图中,要得到POS形式,可以想象将SOP形式中的1和0互换,然后再次应用SOP的圈定方法,得到的圈将代表OR门的求和项。
POS形式的逻辑表达式在某些情况下也很有用,比如在设计某些类型的逻辑电路时。
3.SOP通过圈定1(真值)的单元格来简化逻辑表达式,而POS则是通过圈定0(假值)的单元格来实现。
此题分析:d称为无关项,其能够选择任何你认为方便的值
最小SOP:
采用圈1法,如图中蓝色和绿色实线所示,合并标1的最小项,即。
最小POS:
采用圈0法,如图中红、黄、黑实线所示,合并标0的最小项,即
module top_module (
input a,
input b,
input c,
input d,
output out_sop,
output out_pos
);
assign out_sop = (c & d) | (~a & ~b & c);
assign out_pos = c&(~b|d)&(~a|d);
endmodule