文章目录
该文档内容主要来源于尚硅谷K8S教学视频课件尚硅谷
(学习过程中部分内容参考其他blog进一步理解,参考blog链接在文中已给出)
仅用于知识整理,便于后续巩固复习,如有侵权,请联系本人删除
控制器
Kubernetes 中内建了很多 controller(控制器),这些相当于一个状态机,用来控制 Pod 的具体状态和行为。
控制器类型
- ReplicationController 和 ReplicaSet
- Deployment
- DaemonSet
- StateFulSet
- Job/CronJob
- Horizontal Pod Autoscaling
ReplicationController(已弃用) 和 ReplicaSet
ReplicationController(RC)用来确保容器应用的副本数始终保持在用户定义的副本数,即如果有容器异常退出,会自动创建新的 Pod 来替代;而如果异常多出来的容器也会自动回收; 在新版本的 Kubernetes 中建议使用 ReplicaSet代替ReplicationController 。ReplicaSet 跟 ReplicationController 没有本质的不同,只是名字不一样,并且 ReplicaSet 支持集合式的 selector,比如支持批量删除等操作;
Deployment
Deployment 为 Pod 和 ReplicaSet 提供了一个声明式定义 (declarative) 方法,用来替代以前的 ReplicationController 来方便的管理应用。典型的应用场景包括;
- 定义 Deployment 来创建 Pod 和 ReplicaSet
- 滚动升级和回滚应用
- 扩容和缩容
- 暂停和继续 Deployment
DaemonSet
在简书上找到一篇关于DaemenSet的比较好的介绍
服务守护进程,它的主要作用是在Kubernetes集群的所有节点中运行我们部署的守护进程,相当于在集群节点上分别部署Pod副本,如果有新节点加入集群,Daemonset会自动的在该节点上运行我们需要部署的Pod副本,相反如果有节点退出集群,Daemonset也会移除掉部署在旧节点的Pod副本。
使用 DaemonSet 的一些典型用法:
- 网络插件的 Agent 组件,如(Flannel,Calico)需要运行在每一个节点上,用来处理这个节点上的容器网络;
- 存储插件的 Agent 组件,如(Ceph,Glusterfs)需要运行在每一个节点上,用来在这个节点上挂载F远程存储目录;
- 监控系统的数据收集组件,如(Prometheus Node Exporter,Cadvisor)需要运行在每一个节点上,负责这个节点上的监控信息搜集。
- 日志系统的数据收集组件,如(Fluent,Logstash)需要运行在每一个节点上,负责这个节点上的日志信息搜集。
DaemonSet是如何确保每个节点只运行一个Pod?
- DaemonSet的控制器模型
DaemonSet Controller
先从从 Etcd 里获取所有的 Node 列表; - 然后遍历所有的 Node检查,当前这个 Node节点上是不是有一个携带了我们定义标签的 Pod 在运行;
- 如果没有定义的 Pod,那么就意味着要在这个 Node 上创建这样一个 Pod;
- 如果有定义的 Pod,但是数量大于 1,那就说明要调用 Kubernetes API 把多余的 Pod 从这个 Node 上删除掉;
- 如果正好只有一个定义的 Pod,那说明这个节点是正常的。
Job、Cron Job
Job 负责批处理任务,即仅执行一次的任务,它保证批处理任务的一个或多个 Pod 成功结束
Cron Job 管理基于时间的 Job,即:
- 在给定时间点只运行一次
- 周期性地在给定时间点运行
典型的用法如下所示:
- 在给定的时间点调度 Job 运行
- 创建周期性运行的 Job,例如:数据库备份、发送邮件
StateFulSet
StatefulSet 作为 Controller 为 Pod 提供唯一的标识。它可以保证部署和 scale 的顺序 StatefulSet是为了解决有状态服务的问题(对应Deployments和ReplicaSets是为无状态服务而设计),其应用 场景包括:
- 稳定的持久化存储,即Pod重新调度后还是能访问到相同的持久化数据,基于PVC来实现
- 稳定的网络标志,即Pod重新调度后其PodName和HostName不变,基于Headless Service(即没有 Cluster IP的Service)来实现
- 有序部署,有序扩展,即Pod是有顺序的,在部署或者扩展的时候要依据定义的顺序依次依次进行(即从0到 N-1,在下一个Pod运行之前所有之前的Pod必须都是Running和Ready状态),基于init containers来实 现
- 有序收缩,有序删除(即从N-1到0)
Horizontal Pod Autoscaling
应用的资源使用率通常都有高峰和低谷的时候,如何削峰填谷,提高集群的整体资源利用率,让service中的Pod 个数自动调整呢?这就有赖于Horizontal Pod Autoscaling了,顾名思义,使Pod水平自动缩放