- 博客(490)
- 收藏
- 关注
原创 【PaddleOCR】PaddlePaddle 3.0环境安装,及PaddleOCR3.0 快速入门使用
PaddleOCR 是一款强大的开源 OCR(光学字符识别)工具包,具有高精度、多语言支持和良好的扩展性。本文将指导您如何快速安装和使用 PaddleOCR,包括环境准备和基本的文本识别操作。通过以上步骤,您现在已经成功安装并开始使用 PaddleOCR 进行文本识别。PaddleOCR 提供了丰富的功能和灵活的配置选项,适用于各种文本识别场景。您可以根据实际需求进一步探索和定制 PaddleOCR 的功能。
2025-06-29 09:34:04
510
原创 【PaddleOCR】PaddleOCR 3.0重磅发布!OCR精度跃升13%,多场景文档解析全面升级
介绍 PaddleOCR 3.0 的基础情况,如其基于 PaddlePaddle 3.0 框架开发,支持多种语言文本识别和复杂手写体文本处理,以及引入的新模型(PP-StructureV3、PP-ChatOCRv4 等)及其功能。PaddleOCR自发布以来凭借学术前沿算法和产业落地实践,受到了产学研各方的喜爱,并被广泛应用于众多知名开源项目,例如:Umi-OCR、OmniParser、MinerU、RAGFlow等,已成为广大开发者心中的开源OCR领域的首选工具。
2025-06-29 08:48:25
254
原创 【CV数据集介绍-41】大规模鱼类数据集:开启鱼类图像分类和分割的智能分析新纪元
一、引言二、数据集概况三、数据样本数量与类别详解3.1 样本数量3.2 类别及含义3.3 每个类别的图片数量四、数据集在图像分割和分类任务中的应用4.1 图像分割任务4.2 图像分类任务五、数据集的使用优势和特点5.1 多样的数据来源和高质量图像5.2 丰富的标注信息5.3 大规模样本数量六、总结这个大规模鱼类数据集凭借全面的鱼类种类覆盖、均衡的样本分布以及详细的标注信息,已成为鱼类图像分割和分类任务的优质资源。它在渔业科研、水产养殖管理以及海鲜市场智能化应用开发等领域展现出巨大的应用潜力。
2025-06-28 16:32:26
429
原创 【CV数据集介绍-40】Cityscapes 数据集:助力自动驾驶的语义分割神器
一、引言二、数据集概况三、数据样本数量与类别详解3.1 样本数量3.2 类别及含义3.3 每个类别的图片数量四、数据集在图像分割任务中的应用4.1 语义分割任务简介4.2 Cityscapes 数据集的优势4.3 实际应用案例五、数据集的使用说明和注意事项5.1 使用说明5.2 注意事项六、总结语义分割是计算机视觉中的一个重要任务,它要求模型能够理解图像中的每个像素所属的语义类别。对于自动驾驶而言,语义分割技术可以将道路、车辆、行人等不同元素从图像中区分开来,为车辆的决策系统提供详细的环境信息。
2025-06-27 20:50:04
705
原创 【CV数据集介绍-39】皮肤癌研究利器:HAM10000 数据集详解与应用
一、引言二、数据集概述三、数据样本数量与类别详解3.1 样本数量3.2 类别及含义3.3 每个类别图片数量四、数据集应用4.1 图像分割4.2 图像分类五、总结HAM10000 数据集包含约 10015 张皮肤镜图像,涵盖多种常见色素性皮肤病变。这些图像采集自奥地利维也纳医科大学和澳大利亚昆士兰大学的皮肤癌诊所,时间跨度达 20 年。数据集中的图像经过标准化处理,存储为常见格式,方便研究人员直接使用。
2025-06-27 17:58:57
767
原创 【CV数据集介绍-38】增强型阿尔茨海默病 MRI 数据集:助力精准诊断与研究
一、引言二、数据集概述三、数据集详细信息四、数据集的应用价值五、总结该增强型阿尔茨海默病 MRI 数据集由 MRI 图像组成,涵盖了四个不同的病理阶段,分别为轻度痴呆症、中度痴呆症、非痴呆症和非常轻度痴呆症。数据集分为训练集和测试集,每个集合都包含了增强图像和原始图像,以满足不同的研究和应用需求。增强型阿尔茨海默病 MRI 数据集是一个宝贵的研究资源,其丰富的图像数据和合理的结构设计为阿尔茨海默病的相关研究提供了坚实的基础。
2025-06-27 16:06:56
623
原创 【python报错】成功解决 IndexError: list index out of range
是一个常见的 Python 错误,通常是因为索引超出了列表的有效范围。在访问列表元素之前,检查列表的长度。处理空列表时,添加相应的检查逻辑。使用异常处理机制来捕获和处理索引越界的情况。仔细调试代码逻辑,确保索引的使用正确。检查外部数据源的完整性和正确性。希望这篇文章能够帮助你更好地理解和解决问题。如果你在编程过程中遇到其他问题,欢迎在评论区留言讨论。
2025-06-27 10:29:37
507
原创 【python报错】成功解决 ModuleNotFoundError: No module named ‘cv2’
通常是因为OpenCV库未安装或安装不正确。通过使用pip安装、升级pip、使用Conda或手动安装等方法,你可以轻松解决这个问题。如果你在安装过程中遇到其他问题,欢迎在评论区留言讨论。希望这篇文章能够帮助你顺利解决这个报错,让你的图像处理项目顺利进行。
2025-06-26 13:24:52
752
原创 【Python报错】成功解决error: subprocess-exited-with-error:安装lxml模块不再报错
通过上述两种方法,你应该能够成功解决的问题,并顺利安装lxml模块。如果你在安装其他第三方模块时遇到类似的问题,也可以尝试上述方法。希望这篇文章能帮助你轻松解决这个报错问题。
2025-06-25 18:14:39
948
原创 【Python报错】成功解决:WARNING: There was an error checking the latest version of pip
遇到 “WARNING: There was an error checking the latest version of pip” 时不要慌张。通过上述方法,你可以有效解决这个问题。如果问题依然存在,可以尝试在相关的开发者社区或论坛中寻求帮助,或者查看 pip 和 Python 的官方文档获取更多支持。希望这篇文章能够帮助你顺利解决这个烦人的警告问题,让你的 Python 开发之旅更加顺畅。
2025-06-25 18:06:14
613
原创 【CV数据集介绍-37】水稻图像分类数据集:助力品种识别与品质评估
一、引言二、数据集概述三、数据样本与类别四、数据集的应用场景五、总结与展望该水稻图像数据集涵盖了五个常见的水稻品种:Arborio、Basmati、Ipsala、Jasmine 和 Karacadag。这些品种在纹理、形状和颜色等方面具有独特的特征,使其在市场上和农业生产中具有不同的价值和用途。该水稻图像分类数据集是一个宝贵的研究资源,为水稻品种识别和品质评估提供了丰富的图像和特征数据。
2025-06-25 17:44:10
858
原创 【目标检测】平均精度(AP)与均值平均精度(mAP)计算详解
AP和mAP的核心概念混淆矩阵与PR曲线的关系AP计算的完整流程mAP在不同数据集中的应用提升mAP的实用策略关键点回顾IOU衡量定位精度PR曲线展示模型性能AP是PR曲线下面积mAP是所有类别AP的平均值mAP是目标检测模型的终极成绩单!理解并掌握其计算原理,是你成为CV专家的必经之路!觉得本文有帮助?点击👍支持!如果有任何问题或建议,欢迎在评论区留言讨论~
2025-06-25 16:52:12
1262
原创 【目标检测】评估指标详解:Precision/Recall/F1-Score
精确率(Precision):衡量检测的准确性公式:TP / (TP + FP)优化方向:减少误报召回率(Recall):衡量检测的覆盖率公式:TP / (TP + FN)优化方向:减少漏检F1分数(F1-Score):综合平衡指标公式:2 × (P × R) / (P + R)应用场景:需要平衡准确性和覆盖率的任务关键点回顾混淆矩阵是评估基础:TP/FP/FNIoU阈值决定检测是否有效(通常0.5)PR曲线展示不同阈值下的性能F1分数是精确率和召回率的调和平均。
2025-06-24 21:41:17
1066
原创 【目标检测】图像处理基础:像素、分辨率与图像格式解析
像素(Pixel)是图像的最小单元,每个像素包含颜色信息。在数字图像中,像素就像马赛克瓷砖,共同组成完整画面。分辨率(Resolution)指图像的像素总量,通常表示为:宽度像素数 × 高度像素数像素:图像的基本单位分辨率:决定图像细节图像格式:影响存储和处理效率合理选择输入参数优化预处理流程提高模型性能降低资源消耗进阶思考:为什么YOLO等模型要求输入尺寸为32的倍数?答案:这与卷积神经网络的结构有关。多次下采样后,32倍数的尺寸能确保特征图尺寸为整数,避免信息损失。觉得本文有帮助。
2025-06-23 17:50:13
800
原创 【目标检测】什么是目标检测?应用场景与基本流程
一、引言二、什么是目标检测?2.1 目标检测的核心要素3.2 与相关任务的对比三、目标检测的六大应用场景3.1 自动驾驶3.2 安防监控3.3 医疗影像3.4 工业质检3.5 零售分析3.6 农业应用四、目标检测的基本流程4.1 特征提取4.2 区域建议4.3 分类与回归4.4 后处理五、动手实现目标检测系统5.1 环境准备5.2 完整代码实现六、代码解析与运行结果6.1 代码结构解析6.2 运行效果展示七、目标检测的核心算法演进7.1 两阶段检测器7.2 单阶段检测器7.3 算法性能对比。
2025-06-20 12:34:00
1085
原创 【目标检测】非极大值抑制(NMS)的原理与实现
NMS作为目标检测中不可或缺的后处理步骤,其重要性不言而喻。NMS的核心原理和工作流程NMS的Python实现方法NMS的优化技巧和变体实际应用中的参数调整策略关键思考:当两个目标非常接近时,传统NMS可能导致其中一个被错误抑制。如何解决这个问题?答案使用Soft-NMS替代传统NMS降低IOU阈值(如0.3)增加位置权重(如DIoU-NMS)调整模型锚框设计。
2025-06-19 17:25:52
835
2
原创 【目标检测】IOU的概念与Python实例解析
IOU = 交集区域面积 / 并集区域面积用数学公式表示为:A:真实标注框(Ground Truth)B:预测边界框(Prediction)|A∩B|:两个框的交集面积|A∪B|:两个框的并集面积IOU作为目标检测中最基础的评估指标,理解其原理和实现至关重要。IOU的核心概念和数学原理如何用Python实现IOU计算IOU在目标检测中的实际应用IOU的改进方法和使用场景思考题:当两个框完全不相交时,IOU的值是多少?为什么这种情况下IOU可能不是最佳的评估指标?
2025-06-19 16:47:07
846
原创 【CV数据集介绍-36】眼底图像血管分割(FIVES)数据集:推动人工智能在眼科诊断中的应用
在医疗影像分析领域,人工智能(AI)的应用正变得越来越广泛,特别是在眼科疾病的诊断和治疗中。今天,我们将介绍一个对AI研究至关重要的眼底图像血管分割数据集——FIVES(眼底图像血管分割)数据集。 FIVES 数据集由800张高分辨率彩色眼底照片组成,这些图像在像素级别上进行了手动注释,专门用于视网膜血管分割。该数据集涵盖了从4至83岁各个年龄段的图像,并包含了多种眼部疾病,如糖尿病视网膜病变、年龄相关性黄斑变性和青光眼等。这些丰富的图像资源为AI模型的开发和评估提供了坚实的基础。 原始数据的展示
2025-06-18 16:40:53
679
原创 【数据可视化-57】在线书店数据集可视化分析
title: 书籍标题price: 书籍价格stock: 库存状态(In Stock/Out of Stock)rating: 书籍评级(1-5)category: 书籍类别book_url: 书籍页面URL数据集共包含1000条记录,涵盖了多个书籍类别和不同的价格区间。价格分布:书籍价格呈现右偏分布,大多数书籍价格集中在中低区间。库存状态:大部分书籍处于有库存状态,但仍有部分书籍缺货。评级分布:书籍评级大多集中在4-5分,表明整体用户满意度较高。类别分布。
2025-06-18 11:00:30
875
原创 【CV数据集介绍-35】牙科解剖学数据集(牙齿多类别检测):助力牙科AI研究与应用
一、引言二、数据集概览三、数据样本与类别四、数据集的应用场景五、数据集的优势六、总结与展望牙科解剖学数据集是一个为牙科AI应用量身定制的宝贵资源。凭借其清晰的类别划分、高质量的标注和多样的样本,该数据集为牙科疾病的诊断、治疗以及相关研究提供了坚实的数据基础。通过利用这一数据集,研究人员和开发者可以加速牙科AI技术的创新,为牙科医疗带来更高效、更精准的解决方案。如果你对牙科AI应用或相关研究感兴趣,这个数据集无疑是一个值得深入探索的资源。
2025-06-13 14:43:53
1024
原创 【数据可视化-56】1991-2021年各国的失业数据集可视化分析
Country Name:国家名称Country Code:国家代码1991-2021:每年的失业率(%)失业率分布:2021年全球各国失业率分布不均,部分国家失业率显著高于全球平均水平。失业率变化趋势:过去31年间,全球平均失业率经历了一定的波动,反映出全球经济环境的复杂性。区域差异:不同区域的失业率存在显著差异,某些区域的失业问题更为严重。单个国家分析:以美国为例,其失业率在过去31年间呈现出一定的周期性变化。相关性分析:失业率与经济增长、人口规模、教育水平等因素存在一定的相关性。
2025-06-13 10:53:57
1220
原创 【CV数据集介绍-33】FoodLogoDet-1500:高质量食品标识检测数据集
一、引言二、数据集概览三、数据样本与类别图片数量四、数据集的应用场景五、数据集的优势与挑战5.1 优势5.2 挑战六、总结与展望FoodLogoDet-1500 数据集的出现为食品标识检测领域带来了新的机遇。凭借其大规模、高质量和多样性特点,该数据集为研究人员和从业者提供了一个宝贵的资源,有助于推动食品标识检测技术的发展和应用。然而,数据集中存在的类别不平衡和类间相似性等挑战也不容忽视。未来,研究人员可以进一步改进数据集的采集和标注方法,增加数据的多样性和平衡性;
2025-06-13 10:14:11
844
原创 【CV数据集介绍-32】CCPD Dataset 中国车牌检测识别数据集:助力智能交通与车牌识别研究
一、引言二、数据集概览三、CCPD 2019四、CCPD 2020 (CCPD-Green)五、数据名称介绍(一)区域标识(二)车牌倾斜角度(三)边界框坐标(四)车牌四点坐标(五)车牌号码(六)亮度与模糊度六、CCPD 数据集图片名称解析 Python 代码示例七、数据集的应用场景八、数据集的优势九、总结与展望CCPD数据集是中国车牌检测和识别领域的重要资源。凭借其大规模、多样性和精细标注的特点,CCPD为智能交通系统、车牌识别技术以及相关领域的研究与开发提供了坚实的数据基础。
2025-06-12 17:51:02
1013
原创 【CV数据集介绍-31】Ships/Vessels in Aerial Images航拍图像中的船舶检测数据集:助力海事安全与管理的宝贵资源
一、引言二、数据集概览三、数据样本与类别图片数量四、数据集的应用场景五、数据集的优势六、总结与展望航拍图像中的船舶检测数据集是计算机视觉和海事领域的重要资源。它不仅为船舶检测技术的研究与开发提供了坚实的数据基础,还推动了海事安全、渔业管理、海洋污染监测等多个领域的技术进步和创新发展。如果你对船舶检测、海事安全或相关领域感兴趣,该数据集无疑是一个极具价值的资源,值得深入探索和利用。
2025-06-12 17:09:37
857
原创 【CV数据集介绍-30】条形码和 QR 码图像分类数据集:开启经典计算机视觉的新篇章
一、引言二、数据集概览三、数据样本与类别图片数量四、数据集的应用场景五、数据集的优势六、总结与展望条形码和 QR 码图像数据集是经典计算机视觉领域的重要资源,为条形码和 QR 码的检测、分割和识别研究提供了丰富的数据支持。它不仅推动了传统图像处理技术的发展,还为算法性能评估和新技术探索提供了有力的工具。如果你对条形码和 QR 码图像处理相关项目感兴趣,这个数据集无疑是你研究和开发工作中的得力助手。希望这篇介绍能够帮助大家更好地了解该数据集,促进其在计算机视觉领域的广泛应用,共同推动技术的进步和创新。
2025-06-12 16:46:31
601
原创 【数据可视化-55】心脏病发作数据集可视化分析
年龄:患者的年龄性别:患者的生理性别(男性=1,女性=0)心率:每分钟的心跳数收缩压:心脏收缩时动脉中的压力舒张压:心跳之间的动脉压力血糖:患者的血糖水平CK-MB:心肌损伤时释放的一种心肌酶肌钙蛋白:一种高度特异性的心肌损伤蛋白质生物标志物结果:指示患者是否经历过心脏病发作(1=是,0=否)年龄与心脏病发作:心脏病发作的风险随年龄增长而增加。性别与心脏病发作:男性心脏病发作的比例高于女性。心率与心脏病发作:心率异常(过高或过低)与心脏病发作风险增加相关。血糖水平。
2025-06-12 14:31:02
1174
1
原创 【数据可视化-54】全球AI就业市场与薪资趋势可视化分析(2025)
该数据集涵盖了从全球主要招聘平台收集的超过15,000个AI职位信息,包含19个特征。关键特征包括职位名称、年薪(美元)、经验水平、公司位置、远程工作比例、所需技能、教育要求等。经验水平与薪资:薪资随经验水平提升而显著增加,专家级职位的平均薪资远超入门级职位。远程工作与薪资:完全远程职位的薪资普遍高于混合和无远程选项的职位。公司规模与薪资:大型公司的平均薪资高于中小型公司。行业与薪资:科技和金融行业的AI职位薪资最高。技能要求:Python、机器学习、深度学习等技能需求最高,且与高薪职位密切相关。
2025-06-06 17:40:08
961
1
原创 【CV数据集介绍-29】焊接缺陷目标检测数据集:精准识别焊接质量的关键资源
一、引言二、数据集概览三、数据样本与类别图片数量四、数据集的应用场景五、数据集的优势六、总结与展望焊接缺陷目标检测数据集凭借其高质量的标注和图像的多样性,成为了工业制造领域不可或缺的宝贵资源。它不仅推动了焊接缺陷检测技术的发展,还为焊接质量检测、工业机器人焊接和焊接工艺优化等多个方面提供了有力支持。如果你对焊接缺陷检测相关项目感兴趣,这个数据集将是探索和创新的重要起点。希望这篇介绍能够帮助大家更好地了解该数据集,促进其在工业制造领域的广泛应用。
2025-06-06 16:40:01
1029
原创 【CV数据集介绍-28】YOLO 格式垃圾对象检测数据集:推动智能垃圾分类的高效工具
一、引言二、数据集概览三、 数据类别与分布四、数据集的应用场景五、数据集的优势六、总结该 YOLO 格式垃圾对象检测数据集是一个功能强大的资源,为智能垃圾分类和回收领域的研究与应用提供了重要支持。它不仅涵盖了丰富的垃圾类别和大量的标记图像,还具备高质量的标注和良好的兼容性,能够满足不同用户的需求。通过利用这一数据集,研究人员和开发人员可以加速开发高效的垃圾分类 AI 模型,推动垃圾分类技术的创新和发展,为建设更加清洁、美丽和可持续发展的城市环境做出贡献。
2025-06-04 17:13:51
896
原创 【CV数据集介绍-27】茶叶病害早期检测数据集:助力精准农业的图像资源
一、引言二、数据集概览三、数据样本与类别图片数量四、数据集特点五、数据集的应用场景六、数据集的优势七、总结与展望茶叶病害早期检测数据集凭借其高质量的标注和图像的多样性,成为了茶叶病害检测领域不可或缺的宝贵资源。它不仅推动了茶叶病害检测技术的发展,还为精准农业实践提供了有力支持。如果你对茶叶病害检测相关项目感兴趣,这个数据集将是探索和创新的重要起点。
2025-06-04 10:37:03
828
原创 【CV数据集介绍-25】焊接缺陷 - 目标检测数据集:助力工业制造的精准工具
一、引言二、数据集概览三、数据集的应用场景四、数据集的优势五、总结与展望焊接缺陷检测数据集凭借其高质量的标注和图像的多样性,成为了工业制造领域不可或缺的宝贵资源。它不仅推动了焊接缺陷检测技术的发展,还为焊接质量检测、工业机器人焊接和焊接工艺优化等多个方面提供了有力支持。如果你对焊接缺陷检测相关项目感兴趣,这个数据集将是探索和创新的重要起点。
2025-05-15 17:29:03
911
1
原创 【CV数据集介绍-24】番茄叶病检测数据集:助力农业智能化的精准工具
一、引言二、数据集概况三、数据样本与类别四、数据集的应用场景五、数据集的优势六、总结与展望番茄叶病检测数据集凭借其高质量的标注、丰富的类别和标准化的预处理流程,成为了农业领域中不可或缺的宝贵资源。它不仅推动了番茄叶病检测技术的发展,更为智能农业、温室管理、植物病害研究、教育教学以及移动应用开发等多个方面提供了有力支持。如果你对番茄叶病检测相关项目感兴趣,这个数据集将是探索和创新的重要起点,有望为农业生产的智能化和精准化做出积极贡献。
2025-05-15 15:28:36
956
原创 【CV数据集介绍-23】 药物名称检测数据集:提升医疗安全的精准工具
一、引言二、数据集概述三、数据样本与类别四、数据集的应用场景五、数据集的优势六、总结与展望药物名称检测数据集包含 1823 张多样化图像,专为训练和评估计算机视觉模型而设计,专注于药物标签分析。它涵盖了来自不同制造商和包装风格的各种药品形式,如药瓶、泡罩包装、小瓶等。数据集的文件夹格式如下:原始图片数据的展示如下:数据的配置文件如下:药物名称检测数据集凭借其精准的标注和图像的多样性,成为了医疗保健领域不可或缺的宝贵资源。
2025-05-15 15:14:46
808
原创 【CV数据集介绍-22】 番茄检测数据集:精准识别图片中的西红柿
一、引言二、数据集概况三、数据样本与类别四、数据集的应用场景五、数据集的优势六、总结与展望该番茄检测数据集凭借其精准的标注和图像的多样性,成为了特定物体检测领域不可多得的宝贵资源。它不仅推动了番茄检测技术的发展,还为农业、食品加工和零售等多个行业的智能化升级提供了有力支持。如果你对番茄检测相关项目感兴趣,不妨深入探索这个数据集,或许能从中挖掘出更多创新的应用价值。
2025-05-15 14:42:00
630
原创 【CV数据集介绍-21】SkyFusion 航空目标检测数据集:卫星图像中的微小物体检测利器
一、引言二、数据集概况三、数据集构成四、数据集特点五、应用场景六、总结SkyFusion 航空目标检测数据集凭借其高质量的标注、多样化的目标类别和专注于小目标检测的特点,成为了卫星图像分析领域不可或缺的宝贵资源。它不仅推动了航空目标检测技术的发展,还为军事、环境、城市规划等多个领域的应用提供了坚实的数据支持。如果你对卫星图像中的微小物体检测感兴趣,SkyFusion 数据集无疑是你的不二之选。
2025-05-15 11:35:03
953
原创 【CV数据集介绍-20】人脸对象检测数据集:构建公平与精准的面部识别系统
一、引言二、数据集概览三、数据样本数量与类别图片数量四、数据集的特点五、数据集的应用场景六、数据集的优势七、总结该人脸对象检测数据集是一个精心设计的资源,旨在帮助研究人员和开发人员训练出更公平、更精准的人脸检测模型。它涵盖了丰富多样的面部图像,并提供了高质量的标注信息。如果你对人脸检测技术及其在安防、智能门禁、社交媒体、零售或医疗等领域的应用感兴趣,这个数据集无疑是一个极具价值的资产,值得你深入探索和利用。
2025-05-15 10:19:12
605
原创 【CV数据集介绍-19】烟雾与火灾检测数据集:基于 YOLO 的高效目标识别资源
一、引言二、数据集概览三、数据样本与类别详解四、数据集的应用场景五、数据集的优势六、总结烟雾-火灾-探测-YOLO 数据集是一个专为烟雾和火灾检测设计的高质量数据集,包含了超过 21,000 张图像和两类主要目标的详细标注。它能够为火灾预警系统、智能监控、无人机巡检等应用提供丰富的数据支持。如果你对火灾预防与预警相关项目感兴趣,这个数据集无疑是一个极具价值的资源。希望这篇介绍能够帮助大家更好地了解该数据集,促进其在火灾防控领域的广泛应用。
2025-05-15 09:45:40
895
原创 【CV数据集介绍-34】多种飞机检测的YOLO数据集介绍
一、引言二、数据集概览三、数据样本数量与类别图片数量四、数据集结构与注释格式五、类别介绍六、数据集的应用场景七、数据集的优势八、总结A-10:美国空军的攻击机,主要用于对地攻击。A-400M:欧洲空客公司生产的军用运输机。AG-600:中国研制的大型水陆两栖飞机。AH-64:美国陆军的主力攻击直升机。AV-8B:美国海军陆战队的垂直 / 短距起降战斗机。An-124:俄罗斯安东诺夫设计局生产的大型战略运输机。An-225:世界上最大的运输机,由安东诺夫设计局研发。B-1。
2025-05-14 22:19:25
581
原创 【CV数据集介绍-18】动物检测图像数据集:探索野生动物的珍贵资源
一、引言二、数据集概览三、数据样本数量与类别图片数量四、数据集的应用场景五、数据集的优势六、总结这个动物检测图像数据集是基于 Google Open Images V6 提取的,涵盖了 21 个动物类别,为开发高精度的动物检测模型提供了丰富的数据支持。如果你对野生动物保护、动物行为研究或智能监控相关项目感兴趣,这个数据集无疑是一个值得深入探索的宝贵资产。希望这篇介绍能够帮助大家更好地了解这个动物检测图像数据集,促进其在计算机视觉和野生动物保护领域的应用。
2025-05-14 17:27:56
519
信用卡欺诈检测数据集,和机器学习特征筛选:提升模型性能的关键步骤中的特征筛选代码案列
2024-04-22
机器学习/数据挖掘/数据分析 + pyecharts/seaborn/matplotlib + 二手房分析 + 数据可视化展示
2024-03-23
机器学习 + lightgbm/贝叶斯优化/k折交叉验证 + 基于贝叶斯最优化过程 + 优化模型的代码
2024-03-08
机器学习/工业制造 + ML/xgboost + 异烟酸在生成过程中的各个参数的优化来预测最终的收率
2024-03-07
机器学习 + lightgbm/网格搜索交叉验证 + 贷款违约预测(二分类模型) + 预测一个用户是否会产生违约
2024-03-07
深度学习/NLP + BERT-CRF + 实体识别 + 医学糖尿病数据命名实体识别
2024-03-07
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人