🧑 博主简介:曾任某智慧城市类企业
算法总监
,目前在美国市场的物流公司从事高级算法工程师
一职,深耕人工智能领域,精通python数据挖掘、可视化、机器学习等,发表过AI相关的专利并多次在AI类比赛中获奖。CSDN人工智能领域的优质创作者,提供AI相关的技术咨询、项目开发和个性化解决方案等服务,如有需要请站内私信或者联系任意文章底部的的VX名片(ID:xf982831907
)
💬 博主粉丝群介绍:① 群内初中生、高中生、本科生、研究生、博士生遍布,可互相学习,交流困惑。② 热榜top10的常客也在群里,也有数不清的万粉大佬,可以交流写作技巧,上榜经验,涨粉秘籍。③ 群内也有职场精英,大厂大佬,可交流技术、面试、找工作的经验。④ 进群免费赠送写作秘籍一份,助你由写作小白晋升为创作大佬。⑤ 进群赠送CSDN评论防封脚本,送真活跃粉丝,助你提升文章热度。有兴趣的加文末联系方式,备注自己的CSDN昵称,拉你进群,互相学习共同进步。
【CV数据集介绍-41】大规模鱼类数据集:开启鱼类图像分类和分割的智能分析新纪元
一、引言
在计算机视觉领域,特别是对于渔业和海鲜相关研究与应用来说,一个优质且大规模的鱼类数据集无疑是科研工作者和开发者们的宝贵财富。今天,我要向大家介绍的正是这样一个极具价值的数据集 —— 大规模鱼类数据集。它不仅可以用于鱼类图像的分割任务,还能满足分类任务的需求,为鱼类相关的智能应用提供了坚实的数据基础。
二、数据集概况
该大规模鱼类数据集由伊兹密尔经济大学电气与电子工程系的O. Ulucan、D. Karakaya和M. Turkan精心打造,是伊兹密尔经济大学与工业界紧密合作的结晶。研究人员从土耳其伊兹密尔的一家超市收集了丰富的鱼类图像资源,涉及9种常见的海鲜类型,为相关领域的研究提供了海量且多样的数据支持。
三、数据样本数量与类别详解
3.1 样本数量
数据集图像由柯达Easyshare Z650(分辨率2832×2128)和三星ST60(分辨率1024×768)两款相机拍摄。经过调整大小(保留纵横比至590×445)和数据增强处理(翻转、旋转)后,每个类别最终拥有2000张图像,涵盖1000张RGB鱼图像及其对应的1000张成对地面实况标签图像。
3.2 类别及含义
数据集包含以下9类海鲜:
-
Black Sea Sprat(黑海Sprat鱼) :一种在黑海地区常见的小型鱼类,具有较高的商业捕捞价值,常用于制作鱼罐头等加工食品。
-
Gilt Head Bream(金头鲷) :也称gilthead seabream,是一种名贵的地中海海水鱼,头部较大且呈金黄色,肉质细腻鲜美,在高端餐饮市场备受欢迎。
-
Horse Mackerel(黑鲱鱼) :body呈纺锤形,背部颜色较深,常为青黑色或黑色,腹部较浅,是一种海洋经济鱼类,富含蛋白质和多种维生素。
-
Red Mullet(红鲻鱼) :身体细长,头部较大,颜色通常为红色或红褐色,带有银色边缘,肉质鲜嫩富有弹性,具有较高经济价值。
-
Red Sea Bream(红鲷) :与金头鲷同属一类但品种略有不同,身体颜色更偏向红色或橙红色,是常见的食用鱼之一。
-
Sea Bass(鲈鱼) :是一种名贵的海水鱼类,头部较大呈金黄色,身体银灰色,肉质细嫩味美,在市场上价格较高。
-
Shrimp(虾) :甲壳类水产品,身体分头胸部和腹部,头胸部有坚硬外壳,腹部柔软呈弯曲状,种类繁多,肉质鲜美。
-
Striped Red Mullet(条纹红鲻鱼) :body呈纺锤形,背部有明显褐色或灰色与白色相间条纹,适应性强,广泛分布于沿海地区。
-
Trout(鳟鱼) :生活在淡水环境,body侧扁,背部颜色较深,常为橄榄绿色或棕色,腹部较浅,带红色或橙色斑点,是优质淡水鱼品种。
3.3 每个类别的图片数量
每个类别均包含2000张图像,其中1000张为RGB鱼图像,另外1000张为对应的成对地面实况标签图像。这种均衡的样本分布为模型训练提供了充足且均匀的数据支持,有助于提升分割与分类任务的准确性与稳定性。
四、数据集在图像分割和分类任务中的应用
4.1 图像分割任务
该数据集提供的详细地面实况标签,使得模型能够精准学习鱼类与背景的边界特征,从而实现将鱼类从复杂背景中精确分割出来的目标。例如,在渔业资源调查中,借助该数据集训练的分割模型,可快速统计鱼类数量和大小分布,为渔业资源管理与可持续发展提供关键数据支持。
4.2 图像分类任务
凭借丰富的样本和明确的类别标签,模型可以高效学习不同鱼类的外观特征,实现高准确率的鱼类种类识别。在海鲜市场,基于此数据集训练的分类模型可开发出自动识别海鲜种类并生成价格标签的智能系统,有效提高销售效率与准确性,减少人工错误。
五、数据集的使用优势和特点
5.1 多样的数据来源和高质量图像
图像来源于真实超市环境,涵盖不同光照、角度和姿态下的鱼类图像,两台相机的结合进一步丰富了图像特征。尽管需进行预处理,但原始图像的高质量特性仍为后续任务奠定了可靠基础。
5.2 丰富的标注信息
每个鱼类图像均配有精准的地面实况标签,为分割任务提供详细位置与轮廓信息,为分类任务提供准确监督信号,满足复杂任务需求。
5.3 大规模样本数量
每个类别2000张图像的规模,足以支持深度学习模型(如CNN)的训练,有效避免过拟合问题,同时提升模型泛化能力,使其在不同场景下表现稳定。
六、总结
这个大规模鱼类数据集凭借全面的鱼类种类覆盖、均衡的样本分布以及详细的标注信息,已成为鱼类图像分割和分类任务的优质资源。它在渔业科研、水产养殖管理以及海鲜市场智能化应用开发等领域展现出巨大的应用潜力。如果你正在开展鱼类相关的计算机视觉项目,这个数据集无疑是值得深入挖掘的宝藏,将助力你的研究与应用开发乘风破浪,取得丰硕成果。
数据集下载路径:https://www.kaggle.com/datasets/crowww/a-large-scale-fish-dataset/data