文章目录
一、 卸载原因
tentorFlow目前不支持CUDA12.x的版本,所以降低CUDA的版本
TensorFlow 对 CUDA 和 cuDNN 的版本有严格的要求。例如,TensorFlow 2.10.0 支持 CUDA 11.2 和 cuDNN 8.1,但并未明确支持 CUDA 12。
代码报错:ImportError: DLL load failed while importing _pywrap_tensorflow_internal: 找不到指定的模块。
二、卸载CUDA12
在CUDA 12版本中,安装程序的命名方式与CUDA 11有所不同,其显著变化在于名称中不再包含“CUDA”字样。
例如:
CUDA12
CUDA之前版本
2.1卸载相应程序
打开控制面板,可以根据唯一带有CUDA字样的NVIDIA CUDA Toolkit 12.3的安装时间
,卸载那天安装的以NVIDIA字样的程序。
记住三个不要卸载,分别是
- NVIDIA的图形驱动程序、
- NVIDIA Physx系统软件
- NVIDIA GeForce Experience
卸载方法:控制面板中,双击该软件
或右键→卸载
卸载完成后,清理废弃的注册表,可以用火绒安全-垃圾清理,记得选中扫描注册表,然后清理(若后续还要安装,不清理也可,没影响)。其他的清理软件也可以,如:
第三方卸载工具,可以清理废弃的注册表
2.2删除环境变量
在Windows系统中更改环境变量的步骤如下:
- 右键"此电脑”点击选择“属性”。
- 在系统窗口中,找到并点击的“高级系统设置”。
- 在“系统属性”窗口中,点击“环境变量”按钮。
- 在系统变量中找到Path
如果在你安装时手动添加了环境变量,删除即可。
若发现path中没有含CUDA的环境变量,证明刚刚第一步卸载CUDA的时候系统已经自动删除,若系统没有自动删除(path中仍然含有C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.3这样含有CUDA的路径),则需要手动删除。
2.3删除文件夹
找到自己安装NVIDIA GPU Computing文件夹位置,删除Toolkit。当时安装cuDNN也是把三个文件夹替换到了这里,把这个文件夹删了,CUDA和cuDNN卸载完成。
以上三步:
- 找到需要卸载的程序进行卸载
- 环境变量删除
- 删除安装文件夹
CUDA和CuDNN卸载完成!