彻底卸载CUDA12.x和cuDNN

文章目录

在这里插入图片描述


一、 卸载原因

tentorFlow目前不支持CUDA12.x的版本,所以降低CUDA的版本

TensorFlow 对 CUDA 和 cuDNN 的版本有严格的要求。例如,TensorFlow 2.10.0 支持 CUDA 11.2 和 cuDNN 8.1,但并未明确支持 CUDA 12‌。
代码报错:ImportError: DLL load failed while importing _pywrap_tensorflow_internal: 找不到指定的模块。


二、卸载CUDA12

在CUDA 12版本中,安装程序的命名方式与CUDA 11有所不同,其显著变化在于名称中不再包含“CUDA”字样。
例如:
CUDA12
在这里插入图片描述


CUDA之前版本
在这里插入图片描述

2.1卸载相应程序

打开控制面板,可以根据唯一带有CUDA字样的NVIDIA CUDA Toolkit 12.3的安装时间,卸载那天安装的以NVIDIA字样的程序。
在这里插入图片描述

记住三个不要卸载,分别是

  • NVIDIA的图形驱动程序、
  • NVIDIA Physx系统软件
  • NVIDIA GeForce Experience
    在这里插入图片描述
    卸载方法:控制面板中,双击该软件右键→卸载

卸载完成后,清理废弃的注册表,可以用火绒安全-垃圾清理,记得选中扫描注册表,然后清理(若后续还要安装,不清理也可,没影响)。其他的清理软件也可以,如:
第三方卸载工具,可以清理废弃的注册表
在这里插入图片描述
在这里插入图片描述

2.2删除环境变量

在Windows系统中更改环境变量的步骤如下‌:

  1. 右键"此电脑”点击选择“属性”。
  2. 在系统窗口中,找到并点击的“高级系统设置”。
  3. 在“系统属性”窗口中,点击“环境变量”按钮。
  4. 在系统变量中找到Path

在这里插入图片描述
如果在你安装时手动添加了环境变量,删除即可。
若发现path中没有含CUDA的环境变量,证明刚刚第一步卸载CUDA的时候系统已经自动删除,若系统没有自动删除(path中仍然含有C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.3这样含有CUDA的路径),则需要手动删除。

2.3删除文件夹

找到自己安装NVIDIA GPU Computing文件夹位置,删除Toolkit。当时安装cuDNN也是把三个文件夹替换到了这里,把这个文件夹删了,CUDA和cuDNN卸载完成。
在这里插入图片描述
以上三步:

  1. 找到需要卸载的程序进行卸载
  2. 环境变量删除
  3. 删除安装文件夹

CUDA和CuDNN卸载完成!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值