论文链接:https://arxiv.org/pdf/2302.03735.pdf
目录
2. Generic Architecture of LMRS
摘要
预训练模型和学习到的表示有助于一系列下游任务,本文系统调研了如何从不同PLM(Pre-trained Language Models)相关的训练范式学习到的预训练模型中提取和迁移知识,从而提升推荐性能(泛化性、稀疏性、效率和有效性等)。
1. Introduction
目前,数据稀疏性问题成为当前深度推荐模型的一个主要性能瓶颈。而在大规模无监督语料库上训练进行预训练(pre-training),然后在不同的下游监督任务中进行微调(fine-tuning)取得了很好地效果。pre-training&fine-tuning范式的优点是:能够通过无监督任务从无标签数据中提取富含信息和可迁移的知识,这将有助于下游任务,尤其是这些任务的无标签数据缺乏时,从而避免了模型无从训练。
最近提出的prompt learning通过一种简单而灵活的方式进一步统一了在不同任务上PLMs的使用。 prompt learning依赖一系列适当的提示(hard text template/soft continuous embeddings),将下游任务重新定义为预训练任务。这种训练范式的优点有:(1)弥合了预训练和下游目标之间的差距,允许更好地利用预训练模型中丰富的知识,当下游数据非常少时,该优势尤其明显;(2)只需要调整一小部分参数即可,改方法更加高效。
Knowledge transfer via pre-training for recommendation: A review and prospect 总结了一些关于推荐模型预训练的研究,并且讨论了不同领域间的知识迁移方法,但未深入研究预训练推荐模型的训练细节。Self-Supervised Learning for Recommender Systems: A Survey 简要概述了RSs中自监督推荐进展,这意味着用于模型训练的监督信号是由原始数据半自动生成的。本文则不再严格关注自监督训练策略,也探索监督信号和数据增强技术用于pre-training&fine-tuning和prompting中。
2. Generic Architecture of LMRS
LMRS( Language Modelling Paradigm Adaptations for Recommender Systems)通过从预训练模型(PTMs)进行知识迁移来克服数据稀疏性问题。Fig1从data input、pre-training、fine-tuning/prompting和对不同推荐任务的推荐角度给出了 LMRS的高度概述。首先将数据预处理为所需形式(如图、有序序列、对齐的文本-图像对等),然后执行“pre-train, fine-tune”或“pre-train, prompt”,如果inference仅基于预训练模型,那么可将其视为一种端到端的训练方式,但利用了基于LM的学习目标,训练得到的模型可用于推断不同的推荐任务。
3. Data Types
将输入数据编码为嵌入通常是推荐过程的第一步,推荐系统的输入比大多数NLP任务更加多样化。
因此,编码技术和编码过程可以根据不同的输入类型进行区分。本节将概述几种输入数据类型,然后再深入讨论推荐的训练技术。
- 文本数据
文本数据是推荐中最常用的输入之一,文本数据主要包括:reviews,comments, summaries, news, conversations和codes等。
- 序列数据
本文将按时间顺序或按特定序列排序的用户交互认为序列输入,这种输入通常作为序列推荐或会话推荐的输入。
- 图
在PLMRS训练的不同阶段,图构造和图学习为提升推荐性能产生着不同的作用,其类型通常有:用户-用户社交图、用户-物品交互图、异质知识图谱等。
- 多模态数据
同“图”。
4. LMRS Training Strategies
目前,主要有两类不同的训练模式:pre-train&fine-tune paradigm 和 prompt learning paradigm。根据不同的推荐目的,以上分类又可以进一步分为不同的子类,下图展示了LMRSs的分类及相应的代表性LMRS工作。表1更详尽地展示了一些代表新LMRSs工作。
表1:代表性LMRS方法
训练策略 | 论文 | 学习目标 | 推荐任务 | 数据类型 | 开源代码 |
Pre-training & Fine-tuning | |||||
Pre-training w/o Fine-tuning | Bert4rec: Sequential recommendation with bidirectional encoder representations from transformer, 2019, CIKM | Pre-train:MLM | Sequential RS | Sequential data | GitHub - FeiSun/BERT4Rec: BERT4Rec: Sequential Recommendation with Bidirectional Encoder Representations from Transformer |
Path language modeling over knowledge graphsfor ex-plainable recommendation, 2022, WWW | Pre-train: AM | Explainable RS | Graph | N/A | |